ترغب بنشر مسار تعليمي؟ اضغط هنا

Reducing the Athena WFI charged particle background: Results from Geant4 simulations

57   0   0.0 ( 0 )
 نشر من قبل Catherine E. Grant
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the science goals of the Wide Field Imager (WFI) on ESAs Athena X-ray observatory is to map hot gas structures in the universe, such as clusters and groups of galaxies and the intergalactic medium. These deep observations of faint diffuse sources require low background and the best possible knowledge of that background. The WFI Background Working Group is approaching this problem from a variety of directions. Here we present analysis of Geant4 simulations of cosmic ray particles interacting with the structures aboard Athena, producing signal in the WFI. We search for phenomenological correlations between these particle tracks and detected events that would otherwise be categorized as X-rays, and explore ways to exploit these correlations to flag or reject such events in ground processing. In addition to reducing the Athena WFI instrumental background, these results are applicable to understanding the particle component in any silicon-based X-ray detector in space.



قيم البحث

اقرأ أيضاً

The Science Products Module (SPM), a US contribution to the Athena Wide Field Imager, is a highly capable secondary CPU that performs special processing on the science data stream. The SPM will have access to both accepted X-ray events and those that were rejected by the on-board event recognition processing. It will include two software modules. The Transient Analysis Module will perform on-board processing of the science images to identify and characterize variability of the prime target and/or detection of serendipitous transient X-ray sources in the field of view. The Background Analysis Module will perform more sophisticated flagging of potential background events as well as improved background characterization, making use of data that are not telemetered to the ground, to provide improved background maps and spectra. We present the preliminary design of the SPM hardware as well as a brief overview of the software algorithms under development.
149 - A. Rau , N. Meidinger , K. Nandra 2013
The Wide Field Imager (WFI) is one of the two scientific instruments proposed for the Athena+ X-ray observatory. It will provide imaging in the 0.1-15 keV band over a wide field, simultaneously with spectrally and time-resolved photon counting. The i nstrument is designed to make optimal use of the grasp (collecting area times solid angle product) provided by the optical design of the Athena+ mirror system (Willingale et al. 2013), by combining a sensitive approx. 40 diameter field of view (baseline; 50 goal) DEPFET detector with a pixel size properly sampling the angular resolution of 5 arc sec on-axis (half energy width).This synthesis makes the WFI a very powerful survey instrument, significantly surpassing currently existing capabilities (Nandra et al. 2013; Aird et al. 2013). In addition, the WFI will provide unprecedented simultaneous high-time resolution and high count rate capabilities for the observation of bright sources with low pile-up and high efficiency. In this paper, we summarize the instrument design, the status of the technology development, and the baseline performance.
The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and tim ing resolution imaging and spectroscopic observations the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal plane detector, providing a field of view of 18 arcsec will be the main detector. Based on the actual mechanics, thermal and shielding design we present estimates for the WFI cosmic ray induced background obtained by the use of Monte-Carlo simulations and possible background reduction measures.
Given the unprecedented effective area, the new ATHENA Silicon Pore Optics (SPO) focusing technology, the dynamic and variable L2 environment, where no X-ray mission has flown up to date, a dedicated Geant4 simulation campaign is needed to evaluate t he impact of low energy protons scattering on the ATHENA mirror surface and the induced residual background level on its X-ray detectors. The Geant4 mass model is built as part of the ESA AREMBES project activities using the BoGEMMS framework. An SPO mirror module row is the atomic unit of the mass model, allowing the simulation of the full structure by means of 20 independent runs, one for each row. Thanks to the BoGEMMS configuration files, both single pores, mirror modules or the entire SPO row can be built with the same Geant4 geometry. Both Remizovich, in its elastic approximation, and Coulomb single scattering Geant4 models are used in the interaction of mono-energetic proton beams with a single SPO pore. The scattering efficiency for the first model is almost twice the efficiency obtained with the latter but for both cases we obtain similar polar and azimuthal angular distributions, with about 70-75% of scatterings generated by single or double reflections. The soft proton flux modelled for the plasma sheet region is used as input for the simulation of soft proton funnelling by the full SPO mass model. A much weaker soft proton vignetting than the one observed by XMM-Newton EPIC detectors is generated by ATHENA mirrors. The residual soft proton flux reaching the focal plane, defined as a 15 cm radius, is 10^4 times lower than the input L2 soft proton population entering the mirror, at the same energy, with rates comparable or higher than the ones observed in XMM EPIC-pn most intense soft proton flares.
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in $mathrm{CaWO_4}$ crystals. To understand the CRESST electrom agnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2. We are able to explain up to $(68 pm 16),mathrm{%}$ of the electromagnetic background in the energy range between $1,mathrm{keV}$ and $40,mathrm{keV}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا