ﻻ يوجد ملخص باللغة العربية
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in $mathrm{CaWO_4}$ crystals. To understand the CRESST electromagnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2. We are able to explain up to $(68 pm 16),mathrm{%}$ of the electromagnetic background in the energy range between $1,mathrm{keV}$ and $40,mathrm{keV}$.
CRESST is a multi-stage experiment directly searching for dark matter (DM) using cryogenic $mathrm{CaWO_4}$ crystals. Previous stages established leading limits for the spin-independent DM-nucleon cross section down to DM-particle masses $m_mathrm{DM
TREX-DM is conceived to look for low-mass Weakly Interacting Massive Particles (WIMPs) using a gas Time Projection Chamber equipped with micromegas readout planes at the Canfranc Underground Laboratory. The detector can hold in the active volume 20 l
The CRESST experiment aims for a detection of dark matter in the form of WIMPs. These particles are expected to scatter elastically off the nuclei of a target material, thereby depositing energy on the recoiling nucleus. CRESST uses scintillating CaW
The XENON100 experiment, installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), aims to directly detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering off xenon nuclei. This pape
We discuss an in-situ evaluation of the $^{85}$Kr, $^{222}$Rn, and $^{220}$Rn background in PandaX-I, a 120-kg liquid xenon dark matter direct detection experiment. Combining with a simulation, their contributions to the low energy electron-recoil ba