ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Routing in a Tree Metric 1-Spanner

87   0   0.0 ( 0 )
 نشر من قبل Milutin Brankovic
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Solomon and Elkin constructed a shortcutting scheme for weighted trees which results in a 1-spanner for the tree metric induced by the input tree. The spanner has logarithmic lightness, logarithmic diameter, a linear number of edges and bounded degree (provided the input tree has bounded degree). This spanner has been applied in a series of papers devoted to designing bounded degree, low-diameter, low-weight $(1+epsilon)$-spanners in Euclidean and doubling metrics. In this paper, we present a simple local routing algorithm for this tree metric spanner. The algorithm has a routing ratio of 1, is guaranteed to terminate after $O(log n)$ hops and requires $O(Delta log n)$ bits of storage per vertex where $Delta$ is the maximum degree of the tree on which the spanner is constructed. This local routing algorithm can be adapted to a local routing algorithm for a doubling metric spanner which makes use of the shortcutting scheme.

قيم البحث

اقرأ أيضاً

The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algor ithms that compute the greedy spanner of n points use Omega(n^2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a O(n)-space algorithm that computes the same spanner for points in R^d running in O(n^2 log^2 n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented.
Let $Vsubsetmathbb{R}^2$ be a set of $n$ sites in the plane. The unit disk graph $DG(V)$ of $V$ is the graph with vertex set $V$ in which two sites $v$ and $w$ are adjacent if and only if their Euclidean distance is at most $1$. We develop a compact routing scheme for $DG(V)$. The routing scheme preprocesses $DG(V)$ by assigning a label $l(v)$ to every site $v$ in $V$. After that, for any two sites $s$ and $t$, the scheme must be able to route a packet from $s$ to $t$ as follows: given the label of a current vertex $r$ (initially, $r=s$) and the label of the target vertex $t$, the scheme determines a neighbor $r$ of $r$. Then, the packet is forwarded to $r$, and the process continues until the packet reaches its desired target $t$. The resulting path between the source $s$ and the target $t$ is called the routing path of $s$ and $t$. The stretch of the routing scheme is the maximum ratio of the total Euclidean length of the routing path and of the shortest path in $DG(V)$, between any two sites $s, t in V$. We show that for any given $varepsilon>0$, we can construct a routing scheme for $DG(V)$ with diameter $D$ that achieves stretch $1+varepsilon$ and label size $O(log Dlog^3n/loglog n)$ (the constant in the $O$-Notation depends on $varepsilon$). In the past, several routing schemes for unit disk graphs have been proposed. Our scheme is the first one to achieve poly-logarithmic label size and arbitrarily small stretch without storing any additional information in the packet.
Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no $O(1)$-competitive online routing algorithm exists. A notable exception is the Delaunay triangula tion for which Bose and Morin [Online routing in triangulations. SIAM Journal on Computing, 33(4):937-951, 2004] showed that there exists an online routing algorithm that is $O(1)$-competitive. However, a Delaunay triangulation can have $Omega(n)$ vertex degree and a total weight that is a linear factor greater than the weight of a minimum spanning tree. We show a simple construction, given a set $V$ of $n$ points in the Euclidean plane, of a planar geometric graph on $V$ that has small weight (within a constant factor of the weight of a minimum spanning tree on $V$), constant degree, and that admits a local routing strategy that is $O(1)$-competitive. Moreover, the technique used to bound the weight works generally for any planar geometric graph whilst preserving the admission of an $O(1)$-competitive routing strategy.
In this paper we consider two metric covering/clustering problems - textit{Minimum Cost Covering Problem} (MCC) and $k$-clustering. In the MCC problem, we are given two point sets $X$ (clients) and $Y$ (servers), and a metric on $X cup Y$. We would l ike to cover the clients by balls centered at the servers. The objective function to minimize is the sum of the $alpha$-th power of the radii of the balls. Here $alpha geq 1$ is a parameter of the problem (but not of a problem instance). MCC is closely related to the $k$-clustering problem. The main difference between $k$-clustering and MCC is that in $k$-clustering one needs to select $k$ balls to cover the clients. For any $eps > 0$, we describe quasi-polynomial time $(1 + eps)$ approximation algorithms for both of the problems. However, in case of $k$-clustering the algorithm uses $(1 + eps)k$ balls. Prior to our work, a $3^{alpha}$ and a ${c}^{alpha}$ approximation were achieved by polynomial-time algorithms for MCC and $k$-clustering, respectively, where $c > 1$ is an absolute constant. These two problems are thus interesting examples of metric covering/clustering problems that admit $(1 + eps)$-approximation (using $(1+eps)k$ balls in case of $k$-clustering), if one is willing to settle for quasi-polynomial time. In contrast, for the variant of MCC where $alpha$ is part of the input, we show under standard assumptions that no polynomial time algorithm can achieve an approximation factor better than $O(log |X|)$ for $alpha geq log |X|$.
We study the question whether a crossing-free 3D morph between two straight-line drawings of an $n$-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two -dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with $O(log n)$ steps, while for the latter $Theta(n)$ steps are always sufficient and sometimes necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا