ﻻ يوجد ملخص باللغة العربية
Let $Vsubsetmathbb{R}^2$ be a set of $n$ sites in the plane. The unit disk graph $DG(V)$ of $V$ is the graph with vertex set $V$ in which two sites $v$ and $w$ are adjacent if and only if their Euclidean distance is at most $1$. We develop a compact routing scheme for $DG(V)$. The routing scheme preprocesses $DG(V)$ by assigning a label $l(v)$ to every site $v$ in $V$. After that, for any two sites $s$ and $t$, the scheme must be able to route a packet from $s$ to $t$ as follows: given the label of a current vertex $r$ (initially, $r=s$) and the label of the target vertex $t$, the scheme determines a neighbor $r$ of $r$. Then, the packet is forwarded to $r$, and the process continues until the packet reaches its desired target $t$. The resulting path between the source $s$ and the target $t$ is called the routing path of $s$ and $t$. The stretch of the routing scheme is the maximum ratio of the total Euclidean length of the routing path and of the shortest path in $DG(V)$, between any two sites $s, t in V$. We show that for any given $varepsilon>0$, we can construct a routing scheme for $DG(V)$ with diameter $D$ that achieves stretch $1+varepsilon$ and label size $O(log Dlog^3n/loglog n)$ (the constant in the $O$-Notation depends on $varepsilon$). In the past, several routing schemes for unit disk graphs have been proposed. Our scheme is the first one to achieve poly-logarithmic label size and arbitrarily small stretch without storing any additional information in the packet.
Let $S$ be a set of $n$ sites, each associated with a point in $mathbb{R}^2$ and a radius $r_s$ and let $mathcal{D}(S)$ be the disk graph on $S$. We consider the problem of designing data structures that maintain the connectivity structure of $mathca
Given a set P of n points in the plane, a unit-disk graph G_{r}(P) with respect to a radius r is an undirected graph whose vertex set is P such that an edge connects two points p, q in P if the Euclidean distance between p and q is at most r. The len
Weak unit disk contact graphs are graphs that admit representing nodes as a collection of internally disjoint unit disks whose boundaries touch if there is an edge between the corresponding nodes. In this work we focus on graphs without embedding, i.
Greedy routing has been studied successfully on Euclidean unit disk graphs, which we interpret as a special case of hyperbolic unit disk graphs. While sparse Euclidean unit disk graphs exhibit grid-like structure, we introduce strongly hyperbolic uni
In this article, we study a variant of the minimum dominating set problem known as the minimum liars dominating set (MLDS) problem. We prove that the MLDS problem is NP-hard in unit disk graphs. Next, we show that the recent sub-quadratic time $frac{