ترغب بنشر مسار تعليمي؟ اضغط هنا

Pole Dancing: 3D Morphs for Tree Drawings

71   0   0.0 ( 0 )
 نشر من قبل Elena Arseneva
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the question whether a crossing-free 3D morph between two straight-line drawings of an $n$-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with $O(log n)$ steps, while for the latter $Theta(n)$ steps are always sufficient and sometimes necessary.

قيم البحث

اقرأ أيضاً

Partial edge drawing (PED) is a drawing style for non-planar graphs, in which edges are drawn only partially as pairs of opposing stubs on the respective end-vertices. In a PED, by erasing the central parts of edges, all edge crossings and the result ing visual clutter are hidden in the undrawn parts of the edges. In symmetric partial edge drawings (SPEDs), the two stubs of each edge are required to have the same length. It is known that maximizing the ink (or the total stub length) when transforming a straight-line graph drawing with crossings into a SPED is tractable for 2-plane input drawings, but NP-hard for unrestricted inputs. We show that the problem remains NP-hard even for 3-plane input drawings and establish NP-hardness of ink maximization for PEDs of 4-plane graphs. Yet, for k-plane input drawings whose edge intersection graph forms a collection of trees or, more generally, whose intersection graph has bounded treewidth, we present efficient algorithms for computing maximum-ink PEDs and SPEDs. We implemented the treewidth-based algorithms and show a brief experimental evaluation.
Human subject studies that map-like visualizations are as good or better than standard node-link representations of graphs, in terms of task performance, memorization and recall of the underlying data, and engagement [SSKB14, SSKB15]. With this in mi nd, we propose the Zoomable Multi-Level Tree (ZMLT) algorithm for multi-level tree-based, map-like visualization of large graphs. We propose seven desirable properties that such visualization should maintain and an algorithm that accomplishes them. (1) The abstract trees represent the underlying graph appropriately at different level of details; (2) The embedded trees represent the underlying graph appropriately at different levels of details; (3) At every level of detail we show real vertices and real paths from the underlying graph; (4) If any node or edge appears in a given level, then they also appear in all deeper levels; (5) All nodes at the current level and higher levels are labeled and there are no label overlaps; (6) There are no edge crossings on any level; (7) The drawing area is proportional to the total area of the labels. This algorithm is implemented and we have a functional prototype for the interactive interface in a web browser.
The problem of {em efficiently} finding the best match for a query in a given set with respect to the Euclidean distance or the cosine similarity has been extensively studied in literature. However, a closely related problem of efficiently finding th e best match with respect to the inner product has never been explored in the general setting to the best of our knowledge. In this paper we consider this general problem and contrast it with the existing best-match algorithms. First, we propose a general branch-and-bound algorithm using a tree data structure. Subsequently, we present a dual-tree algorithm for the case where there are multiple queries. Finally we present a new data structure for increasing the efficiency of the dual-tree algorithm. These branch-and-bound algorithms involve novel bounds suited for the purpose of best-matching with inner products. We evaluate our proposed algorithms on a variety of data sets from various applications, and exhibit up to five orders of magnitude improvement in query time over the naive search technique.
Solomon and Elkin constructed a shortcutting scheme for weighted trees which results in a 1-spanner for the tree metric induced by the input tree. The spanner has logarithmic lightness, logarithmic diameter, a linear number of edges and bounded degre e (provided the input tree has bounded degree). This spanner has been applied in a series of papers devoted to designing bounded degree, low-diameter, low-weight $(1+epsilon)$-spanners in Euclidean and doubling metrics. In this paper, we present a simple local routing algorithm for this tree metric spanner. The algorithm has a routing ratio of 1, is guaranteed to terminate after $O(log n)$ hops and requires $O(Delta log n)$ bits of storage per vertex where $Delta$ is the maximum degree of the tree on which the spanner is constructed. This local routing algorithm can be adapted to a local routing algorithm for a doubling metric spanner which makes use of the shortcutting scheme.
We introduce a model for random geodesic drawings of the complete bipartite graph $K_{n,n}$ on the unit sphere $mathbb{S}^2$ in $mathbb{R}^3$, where we select the vertices in each bipartite class of $K_{n,n}$ with respect to two non-degenerate probab ility measures on $mathbb{S}^2$. It has been proved recently that many such measures give drawings whose crossing number approximates the Zarankiewicz number (the conjectured crossing number of $K_{n,n}$). In this paper we consider the intersection graphs associated with such random drawings. We prove that for any probability measures, the resulting random intersection graphs form a convergent graph sequence in the sense of graph limits. The edge density of the limiting graphon turns out to be independent of the two measures as long as they are antipodally symmetric. However, it is shown that the triangle densities behave differently. We examine a specific random model, blow-ups of antipodal drawings $D$ of $K_{4,4}$, and show that the triangle density in the corresponding crossing graphon depends on the angles between the great circles containing the edges in $D$ and can attain any value in the interval $bigl(frac{83}{12288}, frac{128}{12288}bigr)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا