ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-induced quantum spin disordered state in spin-1/2 honeycomb magnet Na2Co2TeO6

159   0   0.0 ( 0 )
 نشر من قبل Gaoting Lin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTOs quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (vertical to b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.

قيم البحث

اقرأ أيضاً

257 - Tao Xie , Jie Xing , S. E. Nikitin 2021
A layered triangular lattice with spin-1/2 ions is an ideal platform to explore highly entangled exotic states like quantum spin liquid (QSL). Here, we report a systematic in-field neutron scattering study on a perfect two-dimensional triangular-latt ice antiferromagnet, CsYbSe$_2$, a member of the large QSL candidate family rare-earth chalcogenides. The elastic neutron scattering measured down to 70 mK shows that there is a short-range 120$^{circ}$ magnetic order at zero field. In the field-induced ordered states, the spin-spin correlation lengths along the $c$ axis are relatively short, although the heat capacity results indicate long-range magnetic orders at 3 T $-$ 5 T. The inelastic neutron scattering spectra evolve from highly damped continuum-like excitations at zero field to relatively sharp spin wave modes at the plateau phase. Our extensive large-cluster density-matrix renormalization group calculations with a Heisenberg triangular-lattice nearest-neighbor antiferromagnetic model reproduce the essential features of the experimental spectra, including continuum-like excitations at zero field, series of sharp magnons at the plateau phase as well as two-magnon excitations at high energy. This work presents comprehensive experimental and theoretical overview of the unconventional field-induced spin dynamics in triangular-lattice Heisenberg antiferromagnet and thus provides valuable insight into quantum many-body phenomena.
We study the spin-1 honeycomb lattice magnets with frustrated exchange interactions. The proposed microscopic spin model contains first and second neighbor Heisenberg interactions as well as the single-ion anisotropy. We establish a rich phase diagra m that includes a featureless quantum paramagnet and various spin spiral states induced by the mechanism of order by quantum disorder. Although the quantum paramagnet is dubbed featureless, it is shown that, the magnetic excitations develop a contour degeneracy in the reciprocal space at the band minima. These contour degenerate excitations are responsible for the frustrated criticality from the quantum paramagnet to the ordered phases. This work illustrates the effects of magnetic frustration on both magnetic orderings and the magnetic excitations. We discuss the experimental relevance to various Ni-based honeycomb lattice magnets.
We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase et al., Phys. Rev. B 80, 1 04405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density-functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory, as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling J_d within the structural Cu2O6 dimers, two interdimer couplings J_t1 and J_t2, forming magnetic tetramers, and a ferromagnetic coupling J_it between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings J_d : J_t1 : J_t2 : J_it = 1 : 0.20 : 0.45 : -0.30, with J_d of about 178 K. The inequivalence of J_t1 and J_t2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.
94 - H. Kimura , Y. Kamada , Y. Noda 2006
Neutron diffraction measurements under high magnetic fields have been performed for the multiferroic compound HoMn$_{2}$O$_{5}$. At zero field, high-temperature incommensurate magnetic (HT-ICM) -- commensurate magnetic (CM) -- low-temperature incomme nsurate magnetic (LT-ICM) orders occur with decreasing temperature, where ferroelectric polarization arises only in the CM phase. Upon applying a magnetic field, the LT-ICM phase completely disappears and the CM phase is induced at the lowest temperature. This field-induced CM state is completely associated with the field-induced electric polarization in this material [Higashiyama {it et al}., Phys. Rev. B {bf 72}, 064421 (2005).], strongly indicating that the commensurate spin state is essential to the ferroelectricity in the multiferroic $R$Mn$_{2}$O$_{5}$ system.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success ful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا