ترغب بنشر مسار تعليمي؟ اضغط هنا

Featureless quantum paramagnet with frustrated criticality and competing spiral magnetism on spin-1 honeycomb lattice magnet

82   0   0.0 ( 0 )
 نشر من قبل Gang Chen Professor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spin-1 honeycomb lattice magnets with frustrated exchange interactions. The proposed microscopic spin model contains first and second neighbor Heisenberg interactions as well as the single-ion anisotropy. We establish a rich phase diagram that includes a featureless quantum paramagnet and various spin spiral states induced by the mechanism of order by quantum disorder. Although the quantum paramagnet is dubbed featureless, it is shown that, the magnetic excitations develop a contour degeneracy in the reciprocal space at the band minima. These contour degenerate excitations are responsible for the frustrated criticality from the quantum paramagnet to the ordered phases. This work illustrates the effects of magnetic frustration on both magnetic orderings and the magnetic excitations. We discuss the experimental relevance to various Ni-based honeycomb lattice magnets.

قيم البحث

اقرأ أيضاً

We show how to construct fully symmetric, gapped states without topological order on a honey- comb lattice for S = 1/2 spins using the language of projected entangled pair states(PEPS). An explicit example is given for the virtual bond dimension D = 4. Four distinct classes differing by lattice quantum numbers are found by applying the systematic classification scheme introduced by two of the authors [S. Jiang and Y. Ran, Phys. Rev. B 92, 104414 (2015)]. Lack of topological degeneracy or other conventional forms of symmetry breaking, and the existence of energy gap in the proposed wave functions, are checked by numerical calculations of the entanglement entropy and various correlation functions. Our work provides the first explicit realization of a featureless quantum insulator for spin-1/2 particles on a honeycomb lattice.
Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeyc omb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTOs quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (vertical to b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.
Within the Landau paradigm, phases of matter are distinguished by spontaneous symmetry breaking. Implicit here is the assumption that a completely symmetric state exists: a paramagnet. At zero temperature such quantum featureless insulators may be fo rbidden, triggering either conventional order or topological order with fractionalized excitations. Such is the case for interacting particles when the particle number per unit cell, f, is not an integer. But, can lattice symmetries forbid featureless insulators even at integer f? An especially relevant case is the honeycomb (graphene) lattice --- where free spinless fermions at f=1 (the two sites per unit cell mean f=1 is half filling per site) are always metallic. Here we present wave functions for bosons, and a related spin-singlet wave function for spinful electrons, on the f=1 honeycomb, and demonstrate via quantum to classical mappings that they do form featureless Mott insulators. The construction generalizes to symmorphic lattices at integer f in any dimension. Our results explicitly demonstrate that in this case, despite the absence of a non-interacting insulator at the same filling, lack of order at zero temperature does not imply fractionalization.
In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line $J_2=J_3$ that include the point $J_2=J_3=J_1/2$, corresponding to the highly fr ustrated point where the classical ground state has macroscopic degeneracy. Using the Linear Spin-Wave, Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems we find an intermediate phase with a spin gap and short range Neel correlations in the strong quantum limit (S=1/2). All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.
The competing magnetic ground states of the itinerant magnet EuCuSb, which has a hexagonal layered structure, were studied via magnetization, resistivity, and neutron diffraction measurements on single-crystal samples. EuCuSb has a three-dimensional semimetallic band structure as confirmed by band calculation and angle-resolved photoelectron spectroscopy, consistent with the nearly isotropic metallic conductivity in the paramagnetic state. However, below the antiferromagnetic transition temperature of TN1 (8.5 K), the resistivity, especially along the hexagonal axis, increases significantly. This implies the emergence of anisotropic magnetic ordering coupled to the conducting electrons. Neutron diffraction measurements show that the Eu spins, which order ferromagnetically within each layer, are collinearly modulated (up-up-down-down) along the hexagonal axis below TN1, followed by the partial emergence of helical spin modulation below TN2 (6 K). Based on the observation of anomalous magnetoresistance with hysteretic behavior, we discuss the competing nature of the ground state inherent in a frustrated Heisenberg-like spin system with a centrosymmetric structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا