ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting confirmed cases of the COVID-19 pandemic with a migration-based epidemiological model

194   0   0.0 ( 0 )
 نشر من قبل Xinyu Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The unprecedented coronavirus disease 2019 (COVID-19) pandemic is still a worldwide threat to human life since its invasion into the daily lives of the public in the first several months of 2020. Predicting the size of confirmed cases is important for countries and communities to make proper prevention and control policies so as to effectively curb the spread of COVID-19. Different from the 2003 SARS epidemic and the worldwide 2009 H1N1 influenza pandemic, COVID-19 has unique epidemiological characteristics in its infectious and recovered compartments. This drives us to formulate a new infectious dynamic model for forecasting the COVID-19 pandemic within the human mobility network, named the SaucIR-model in the sense that the new compartmental model extends the benchmark SIR model by dividing the flow of people in the infected state into asymptomatic, pathologically infected but unconfirmed, and confirmed. Furthermore, we employ dynamic modeling of population flow in the model in order that spatial effects can be incorporated effectively. We forecast the spread of accumulated confirmed cases in some provinces of mainland China and other countries that experienced severe infection during the time period from late February to early May 2020. The novelty of incorporating the geographic spread of the pandemic leads to a surprisingly good agreement with published confirmed case reports. The numerical analysis validates the high degree of predictability of our proposed SaucIR model compared to existing resemblance. The proposed forecasting SaucIR model is implemented in Python. A web-based application is also developed by Dash (under construction).



قيم البحث

اقرأ أيضاً

We propose a forecasting method for predicting epidemiological health series on a two-week horizon at the regional and interregional resolution. The approach is based on model order reduction of parametric compartmental models, and is designed to acc ommodate small amount of sanitary data. The efficiency of the method is shown in the case of the prediction of the number of infected and removed people during the two pandemic waves of COVID-19 in France, which have taken place approximately between February and November 2020. Numerical results illustrate the promising potential of the approach.
Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no reco very over time, and allows for the transmission-dynamics equations to be solved analytically. The D-model can be extended to describe various focuses of infection, which may account for the original pandemic (D1), the lockdown (D2) and other effects (Dn). The evolution of the COVID-19 pandemic in several countries (China, Spain, Italy, France, UK, Iran, USA and Germany) shows a similar behavior in concord with the D-model trend, characterized by a rapid increase of death cases followed by a slow decline, which are affected by the earliness and efficiency of the lockdown effect. These results are in agreement with more accurate calculations using the extended SIR model with a parametrized solution and more sophisticated Monte Carlo grid simulations, which predict similar trends and indicate a common evolution of the pandemic with universal parameters.
OBJECTIVES: to describe the first wave of the COVID-19 pandemic with a focus on undetected cases and to evaluate different post-lockdown scenarios. DESIGN: the study introduces a SEIR compartmental model, taking into account the region-specific fract ion of undetected cases, the effects of mobility restrictions, and the personal protective measures adopted, such as wearing a mask and washing hands frequently. SETTING AND PARTICIPANTS: the model is experimentally validated with data of all the Italian regions, some European countries, and the US. MAIN OUTCOME MEASURES: the accuracy of the model results is measured through the mean absolute percentage error (MAPE) and Lewis criteria; fitting parameters are in good agreement with previous literature. RESULTS: the epidemic curves for different countries and the amount of undetected and asymptomatic cases are estimated, which are likely to represent the main source of infections in the near future. The model is applied to the Hubei case study, which is the first place to relax mobility restrictions. Results show different possible scenarios. Mobility and the adoption of personal protective measures greatly influence the dynamics of the infection, determining either a huge and rapid secondary epidemic peak or a more delayed and manageable one. CONCLUSIONS: mathematical models can provide useful insights for healthcare decision makers to determine the best strategy in case of future outbreaks.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARI MA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju stment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا