ﻻ يوجد ملخص باللغة العربية
This paper studies the gamma-ray spectra of positron annihilation processes in a series of molecules. The results show that the average valence electron energy of the molecules has a linear correlation with the full width at half maximum (FWHM) of the gamma-ray spectra. In addition, we defined a new physical quantity Average Doppler Shift (ADS), which can be used as the eigenvalue to describe the characteristics of the gamma-ray spectra. Since ADS contains all the information about the gamma-ray spectra, it can more accurately represent the characteristics of the gamma-ray spectra. For a series of molecules, this paper compares the ADS and FWHM of their gamma-ray spectra and the average valence electron energy. The results show that ADS has a linear correlation with the average valence electron energy and the FWHM. Further, this proves that the annihilation mainly occurs on valence electrons, and it also illustrates that the ADS has certain applicability. It is expected that this will provide us with a deeper understanding of the positron annihilation process.
We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($l
We present the first measurement of a one-photon extreme-ultraviolet photoelectron spectrum (PES) of molecules embedded in superfluid helium nanodroplets. The PES of coronene is compared to gas phase and the solid phase PES, and to electron spectra o
SPI on INTEGRAL has provided spectra and a map of the sky in the emission from annihilations of positrons in the interstellar medium of our Galaxy. From high-resolution spectra we learned that a warm, partially-ionized medium is the site where the ob
The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection
In this work we define single-particle potentials for a positron and a positronium atom interacting with light atoms (H, He, Li and Be) by inverting a single-particle Schrodinger equation. For this purpose, we use accurate energies and positron densi