ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-Rays from Positron Annihilation

147   0   0.0 ( 0 )
 نشر من قبل Roland Diehl
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SPI on INTEGRAL has provided spectra and a map of the sky in the emission from annihilations of positrons in the interstellar medium of our Galaxy. From high-resolution spectra we learned that a warm, partially-ionized medium is the site where the observed gamma-rays originate. The gamma-ray emission map shows a major puzzle for broader astrophysics topics, as it is dominated by a bright and extended apparently spherical emission region centered in the Galaxys center. Only recently has the disk of the Galaxy been detected with SPI. This may be regarded as confirmation of earlier expectations that positrons should arise predominantly from sources of nucleosynthesis distributed throughout the plane of the Galaxy, which produce proton-rich unstable isotopes. But there are other plausible sources of positrons, among them pulsars and accreting binaries such as microquasars. SPI results may be interpreted also as hints that these are more significant as positron sources on the Galactic scale than thought before, in the plane and therefore also in the bulge of the Galaxy. This is part of the attempt to understand the surprisingly-bright emission from the central region in the Galaxy, which otherwise also could be interpreted as a first rather direct detection of dark matter annihilations in the Galaxys gravitational well. INTEGRAL has a unique potential to shed light on the various aspects of positron astrophysics, through its capability for imaging spectroscopy.



قيم البحث

اقرأ أيضاً

The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of p ositrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000s, the SPI instrument aboard ESAs INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.
The $gamma$-ray and neutrino emissions from dark matter (DM) annihilation in galaxy clusters are studied. After about one year operation of Fermi-LAT, several nearby clusters are reported with stringent upper limits of GeV $gamma$-ray emission. We us e the Fermi-LAT upper limits of these clusters to constrain the DM model parameters. We find that the DM model distributed with substructures predicted in cold DM (CDM) scenario is strongly constrained by Fermi-LAT $gamma$-ray data. Especially for the leptonic annihilation scenario which may account for the $e^{pm}$ excesses discovered by PAMELA/Fermi-LAT/HESS, the constraint on the minimum mass of substructures is of the level $10^2-10^3$ M$_{odot}$, which is much larger than that expected in CDM picture, but is consistent with a warm DM scenario. We further investigate the sensitivity of neutrino detections of the clusters by IceCube. It is found that neutrino detection is much more difficult than $gamma$-rays. Only for very heavy DM ($sim 10$ TeV) together with a considerable branching ratio to line neutrinos the neutrino sensitivity is comparable with that of $gamma$-rays.
The annihilation of cosmic positrons ($e^+$) with electrons in the interstellar medium (ISM) results in the strongest persistent gamma-ray line signal in the sky. For 50 years, this 511 keV emission has puzzled observers and theoreticians. A key issu e for understanding $e^+$-astrophysics is found in cosmic-ray propagation, especially at low kinetic energies (< 10 MeV). We want to shed light on how $e^+$s propagate and the resulting morphology of the emission. We approach this positron puzzle by inferring kinematic information of the 511 keV line in the inner radian of the Galaxy. This constrains propagation scenarios and source populations. By dissecting the 511 keV emission as measured with INTEGRAL/SPI, we derive spectra for individual regions in the sky. The centroid energies are converted into Doppler-shifts, representing the line-of-sight velocity along different longitudes. This results in a longitude-velocity diagram of $e^+$-annihilation. We also determine Doppler-broadenings to study annihilation conditions as they vary across the Galaxy. We find line-of-sight velocities in the 511 keV line that are consistent with zero, as well as with galactic rotation from CO measurements, and measurements of radioactive Al-26. The velocity gradient in the inner 60 deg is determined to be $4pm6$ km/s/deg. The 511 keV line width is constant as a function of longitude at $2.43pm0.14$ keV. The positronium fraction is found to be 1.0 along the galactic plane. The weak signals in the disk leave open the question whether $e^+$-annihilation is associated with the high velocities seen in Al-26 or rather with ordinarily rotating components of the Galaxys ISM. We confirm previous results that $e^+$s are slowed down to the 10 eV energy scale before annihilation, and constrain bulk Doppler-broadening contributions to <1.25 keV. Consequently, the true annihilation conditions remain unclear.
According to radiative models, radio galaxies and quasars are predicted to produce gamma rays from the earliest stages of their evolution. Exploring their high-energy emission is crucial for providing information on the most energetic processes, the origin and the structure of the newly born radio jets. Taking advantage of more than 11 years of textit{Fermi}-LAT data, we investigate the gamma-ray emission of 162 young radio sources (103 galaxies and 59 quasars), the largest sample of young radio sources used so far for such a gamma-ray study. We separately analyze each source and perform the first stacking analysis of this class of sources to investigate the gamma-ray emission of the undetected sources. We detect significant gamma-ray emission from 11 young radio sources, four galaxies and seven quasars, including the discovery of significant gamma-ray emission from the compact radio galaxy PKS 1007+142 (z=0.213). The cumulative signal of below-threshold young radio sources is not significantly detected. However, it is about one order of magnitude below than those derived from the individual sources, providing stringent upper limits on the gamma-ray emission from young radio galaxies ($F_{gamma}< 4.6 times 10^{-11}$ ph cm$^{-2}$ s$^{-1}$) and quasars ($F_{gamma}< 10.1 times 10^{-11}$ ph cm$^{-2}$ s$^{-1}$), and enabling a comparison with the models proposed. With this analysis of more than a decade of textit{Fermi}-LAT observations, we can conclude that while individual young radio sources can be bright gamma-ray emitters, the collective gamma-ray emission of this class of sources is not bright enough to be detected by textit{Fermi}-LAT.
We examine the annihilation of positrons on polycyclic aromatic hydrocarbon (PAH) molecules in interstellar medium conditions. We estimate the annihilation rates of positrons on PAHs by a semi-empirical approach. We show that PAHs can play a signific ant role in the overall galactic positron annihilation picture and use the annihilation rates and INTEGRAL galactic emission measurements to constrain the amount of PAHs present in the ISM. We find an upper limit of 4.6 x 10^-7 for the PAH abundance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا