ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic orientation of rotating dipole molecules in an external field

84   0   0.0 ( 0 )
 نشر من قبل Vitaly Kresin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their adiabatic-entry orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and adiabatic-entry ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.

قيم البحث

اقرأ أيضاً

Chirality is ubiquitous in nature and fundamental in science, from particle physics to metamaterials.The most established technique of chiral discrimination - photoabsorption circular dichroism - relies on the magnetic properties of a chiral medium a nd yields an extremely weak chiral response. We propose and demonstrate a new, orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexitation circular dichroism. It does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation without the aid of further chiral interactions using linearly polarized laser pulses. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.
We first give a short review of the ``local-current approximation (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum- mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C$_{60}$ molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode (``surface plasmon) with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a ``volume plasmon.
In the present work, we investigate the ionization of molecules of biological interest by the impact of multicharged ions in the intermediate to high energy range. We performed full non-perturbative distorted-wave calculations (CDW) for thirty-six co llisional systems composed by six atomic targets: H, C, N, O, F, and S -which are the constituents of most of the DNA and biological molecules- and six charged projectiles (antiprotons, H, He, B, C, and O). On account of the radiation damage caused by secondary electrons, we inspect the energy and angular distributions of the emitted electrons from the atomic targets. We examine seventeen molecules: DNA and RNA bases, DNA backbone, pyrimidines, tetrahydrofuran (THF), and C n H n compounds. We show that the simple stoichiometric model (SSM), which approximates the molecular ionization cross sections as a linear combination of the atomic ones, gives reasonably good results for complex molecules. We also inspect the extensively used Toburen scaling of the total ionization cross sections of molecules with the number of weakly bound electrons. Based on the atomic CDW results, we propose new active electron numbers, which leads to a better universal scaling for all the targets and ions studied here in the intermediate to the high energy region. The new scaling describes well the available experimental data for proton impact, including small molecules. We perform full molecular calculations for five nucleobases and test a modified stoichiometric formula based on the Mulliken charge of the composite atoms. The difference introduced by the new stoichiometric formula is less than 3%, which indicates the reliability of the SSM to deal with this type of molecules. The results of the extensive ion-target examination included in the present study allow us to assert that the SSM and the CDW-based scaling will be useful tools in this area.
We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($l ambdaapprox130 text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to within 5 %. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data which should be readily available at upcoming high-repetition-rate facilities.
Water clusters embedding a nitric acid molecule HNO3(H2O)_{n=1-10} are investigated via electrostatic deflection of a molecular beam. We observe large paraelectric susceptibilities that greatly exceed the electronic polarizability, revealing the cont ribution of permanent dipole moments. The moments derived from the data are also significantly higher than those of pure water clusters. An enhancement in the susceptibility for n=5,6 and a rise in cluster abundances setting in at n=6 suggest that dissociation of the solvated acid molecule into ions takes place in this size range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا