ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hypergradient Approach to Robust Regression without Correspondence

76   0   0.0 ( 0 )
 نشر من قبل Yujia Xie
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a variant of regression problem, where the correspondence between input and output data is not available. Such shuffled data is commonly observed in many real world problems. Taking flow cytometry as an example, the measuring instruments may not be able to maintain the correspondence between the samples and the measurements. Due to the combinatorial nature of the problem, most existing methods are only applicable when the sample size is small, and limited to linear regression models. To overcome such bottlenecks, we propose a new computational framework -- ROBOT -- for the shuffled regression problem, which is applicable to large data and complex nonlinear models. Specifically, we reformulate the regression without correspondence as a continuous optimization problem. Then by exploiting the interaction between the regression model and the data correspondence, we develop a hypergradient approach based on differentiable programming techniques. Such a hypergradient approach essentially views the data correspondence as an operator of the regression, and therefore allows us to find a better descent direction for the model parameter by differentiating through the data correspondence. ROBOT can be further extended to the inexact correspondence setting, where there may not be an exact alignment between the input and output data. Thorough numerical experiments show that ROBOT achieves better performance than existing methods in both linear and nonlinear regression tasks, including real-world applications such as flow cytometry and multi-object tracking.



قيم البحث

اقرأ أيضاً

Linear regression without correspondences is the problem of performing a linear regression fit to a dataset for which the correspondences between the independent samples and the observations are unknown. Such a problem naturally arises in diverse dom ains such as computer vision, data mining, communications and biology. In its simplest form, it is tantamount to solving a linear system of equations, for which the entries of the right hand side vector have been permuted. This type of data corruption renders the linear regression task considerably harder, even in the absence of other corruptions, such as noise, outliers or missing entries. Existing methods are either applicable only to noiseless data or they are very sensitive to initialization or they work only for partially shuffled data. In this paper we address these issues via an algebraic geometric approach, which uses symmetric polynomials to extract permutation-invariant constraints that the parameters $xi^* in Re^n$ of the linear regression model must satisfy. This naturally leads to a polynomial system of $n$ equations in $n$ unknowns, which contains $xi^*$ in its root locus. Using the machinery of algebraic geometry we prove that as long as the independent samples are generic, this polynomial system is always consistent with at most $n!$ complex roots, regardless of any type of corruption inflicted on the observations. The algorithmic implication of this fact is that one can always solve this polynomial system and use its most suitable root as initialization to the Expectation Maximization algorithm. To the best of our knowledge, the resulting method is the first working solution for small values of $n$ able to handle thousands of fully shuffled noisy observations in milliseconds.
Recent focus on robustness to adversarial attacks for deep neural networks produced a large variety of algorithms for training robust models. Most of the effective algorithms involve solving the min-max optimization problem for training robust models (min step) under worst-case attacks (max step). However, they often suffer from high computational cost from running several inner maximization iterations (to find an optimal attack) inside every outer minimization iteration. Therefore, it becomes difficult to readily apply such algorithms for moderate to large size real world data sets. To alleviate this, we explore the effectiveness of iterative descent-ascent algorithms where the maximization and minimization steps are executed in an alternate fashion to simultaneously obtain the worst-case attack and the corresponding robust model. Specifically, we propose a novel discrete-time dynamical system-based algorithm that aims to find the saddle point of a min-max optimization problem in the presence of uncertainties. Under the assumptions that the cost function is convex and uncertainties enter concavely in the robust learning problem, we analytically show that our algorithm converges asymptotically to the robust optimal solution under a general adversarial budget constraints as induced by $ell_p$ norm, for $1leq pleq infty$. Based on our proposed analysis, we devise a fast robust training algorithm for deep neural networks. Although such training involves highly non-convex robust optimization problems, empirical results show that the algorithm can achieve significant robustness compared to other state-of-the-art robust models on benchmark data sets.
We introduce a general method for improving the convergence rate of gradient-based optimizers that is easy to implement and works well in practice. We demonstrate the effectiveness of the method in a range of optimization problems by applying it to s tochastic gradient descent, stochastic gradient descent with Nesterov momentum, and Adam, showing that it significantly reduces the need for the manual tuning of the initial learning rate for these commonly used algorithms. Our method works by dynamically updating the learning rate during optimization using the gradient with respect to the learning rate of the update rule itself. Computing this hypergradient needs little additional computation, requires only one extra copy of the original gradient to be stored in memory, and relies upon nothing more than what is provided by reverse-mode automatic differentiation.
372 - Bhanu Garg , Naresh Manwani 2019
The real-world data is often susceptible to label noise, which might constrict the effectiveness of the existing state of the art algorithms for ordinal regression. Existing works on ordinal regression do not take label noise into account. We propose a theoretically grounded approach for class conditional label noise in ordinal regression problems. We present a deep learning implementation of two commonly used loss functions for ordinal regression that is both - 1) robust to label noise, and 2) rank consistent for a good ranking rule. We verify these properties of the algorithm empirically and show robustness to label noise on real data and rank consistency. To the best of our knowledge, this is the first approach for robust ordinal regression models.
With the dramatic increase of dimensions in the data representation, extracting latent low-dimensional features becomes of the utmost importance for efficient classification. Aiming at the problems of unclear margin representation and difficulty in r evealing the data manifold structure in most of the existing linear discriminant methods, we propose a new discriminant feature extraction framework, namely Robust Locality-Aware Regression (RLAR). In our model, we introduce a retargeted regression to perform the marginal representation learning adaptively instead of using the general average inter-class margin. Besides, we formulate a new strategy for enhancing the local intra-class compactness of the data manifold, which can achieve the joint learning of locality-aware graph structure and desirable projection matrix. To alleviate the disturbance of outliers and prevent overfitting, we measure the regression term and locality-aware term together with the regularization term by the L2,1 norm. Further, forcing the row sparsity on the projection matrix through the L2,1 norm achieves the cooperation of feature selection and feature extraction. Then, we derive an effective iterative algorithm for solving the proposed model. The experimental results over a range of UCI data sets and other benchmark databases demonstrate that the proposed RLAR outperforms some state-of-the-art approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا