ترغب بنشر مسار تعليمي؟ اضغط هنا

MOST: A Multi-Oriented Scene Text Detector with Localization Refinement

250   0   0.0 ( 0 )
 نشر من قبل Minghang He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past few years, the field of scene text detection has progressed rapidly that modern text detectors are able to hunt text in various challenging scenarios. However, they might still fall short when handling text instances of extreme aspect ratios and varying scales. To tackle such difficulties, we propose in this paper a new algorithm for scene text detection, which puts forward a set of strategies to significantly improve the quality of text localization. Specifically, a Text Feature Alignment Module (TFAM) is proposed to dynamically adjust the receptive fields of features based on initial raw detections; a Position-Aware Non-Maximum Suppression (PA-NMS) module is devised to selectively concentrate on reliable raw detections and exclude unreliable ones; besides, we propose an Instance-wise IoU loss for balanced training to deal with text instances of different scales. An extensive ablation study demonstrates the effectiveness and superiority of the proposed strategies. The resulting text detection system, which integrates the proposed strategies with a leading scene text detector EAST, achieves state-of-the-art or competitive performance on various standard benchmarks for text detection while keeping a fast running speed.



قيم البحث

اقرأ أيضاً

Scene text detection task has attracted considerable attention in computer vision because of its wide application. In recent years, many researchers have introduced methods of semantic segmentation into the task of scene text detection, and achieved promising results. This paper proposes a detector framework based on the conditional generative adversarial networks to improve the segmentation effect of scene text detection, called DGST (Discriminator Guided Scene Text detector). Instead of binary text score maps generated by some existing semantic segmentation based methods, we generate a multi-scale soft text score map with more information to represent the text position more reasonably, and solve the problem of text pixel adhesion in the process of text extraction. Experiments on standard datasets demonstrate that the proposed DGST brings noticeable gain and outperforms state-of-the-art methods. Specifically, it achieves an F-measure of 87% on ICDAR 2015 dataset.
125 - Xinyu Zhou , Cong Yao , He Wen 2017
Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.
198 - Cong Yao , Xiang Bai , Nong Sang 2016
Recently, scene text detection has become an active research topic in computer vision and document analysis, because of its great importance and significant challenge. However, vast majority of the existing methods detect text within local regions, t ypically through extracting character, word or line level candidates followed by candidate aggregation and false positive elimination, which potentially exclude the effect of wide-scope and long-range contextual cues in the scene. To take full advantage of the rich information available in the whole natural image, we propose to localize text in a holistic manner, by casting scene text detection as a semantic segmentation problem. The proposed algorithm directly runs on full images and produces global, pixel-wise prediction maps, in which detections are subsequently formed. To better make use of the properties of text, three types of information regarding text region, individual characters and their relationship are estimated, with a single Fully Convolutional Network (FCN) model. With such predictions of text properties, the proposed algorithm can simultaneously handle horizontal, multi-oriented and curved text in real-world natural images. The experiments on standard benchmarks, including ICDAR 2013, ICDAR 2015 and MSRA-TD500, demonstrate that the proposed algorithm substantially outperforms previous state-of-the-art approaches. Moreover, we report the first baseline result on the recently-released, large-scale dataset COCO-Text.
Chinese keyword spotting is a challenging task as there is no visual blank for Chinese words. Different from English words which are split naturally by visual blanks, Chinese words are generally split only by semantic information. In this paper, we p ropose a new Chinese keyword spotter for natural images, which is inspired by Mask R-CNN. We propose to predict the keyword masks guided by text line detection. Firstly, proposals of text lines are generated by Faster R-CNN;Then, text line masks and keyword masks are predicted by segmentation in the proposals. In this way, the text lines and keywords are predicted in parallel. We create two Chinese keyword datasets based on RCTW-17 and ICPR MTWI2018 to verify the effectiveness of our method.
Scene text detection, which is one of the most popular topics in both academia and industry, can achieve remarkable performance with sufficient training data. However, the annotation costs of scene text detection are huge with traditional labeling me thods due to the various shapes of texts. Thus, it is practical and insightful to study simpler labeling methods without harming the detection performance. In this paper, we propose to annotate the texts by scribble lines instead of polygons for text detection. It is a general labeling method for texts with various shapes and requires low labeling costs. Furthermore, a weakly-supervised scene text detection framework is proposed to use the scribble lines for text detection. The experiments on several benchmarks show that the proposed method bridges the performance gap between the weakly labeling method and the original polygon-based labeling methods, with even better performance. We will release the weak annotations of the benchmarks in our experiments and hope it will benefit the field of scene text detection to achieve better performance with simpler annotations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا