ﻻ يوجد ملخص باللغة العربية
The triaxial nature of low-lying rotational bands of $^{166}$Er is presented from the viewpoint of the Bohr Hamiltonian and from that of many-fermion calculations by the Monte Carlo shell model and the constrained Hartree-Fock method with projections. A recently proposed novel picture of those bands suggests definite triaxial shapes of those bands, in contrast to the traditional view with the prolate ground-state band and the $gamma$-vibrational excited band. Excitation level energies and E2 transitions can be described well by the Bohr Hamiltonian and by the many-fermion approaches, where rather rigid triaxiality plays vital roles, although certain fluctuations occur in shell-model wave functions. Based on the potential energy surfaces with the projections, we show how the triaxial rigidity appears and what the softness of the triaxiality implies. The excitation to the so-called double $gamma$-phonon state is discussed briefly.
We expand the triaxial projected shell model basis to include triaxially-deformed multi-quasiparticle states. This allows us to study the yrast and gamma-vibrational bands up to high spins for both gamma-soft and well-deformed nuclei. As the first ap
We discuss in depth the application of the classical concepts for interpreting the quantal results from the triaxial rotor core without and with odd-particle. The corresponding limitations caused by the discreteness and finiteness of the angular mome
Background: Recent accumulation of experimental data is revealing the nuclear deformation in vicinity of 42Si. This requests systematic theoretical studies to clarify more specific aspects of nuclear deformation and its causes. Purpose: The purpose o
Inspired by the recent experimental data (Phys. Lett. B {bf 675} (2009) 420), we extend the triaxial projected shell model approach to study the $gamma$-band structure in odd-mass nuclei. As a first application of the new development, the $gamma$-vib
In addition to shape oscillations, low-energy excitation spectra of deformed nuclei are also influenced by pairing vibrations. The simultaneous description of these collective modes and their coupling has been a long-standing problem in nuclear struc