ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling of pairing and triaxial shape vibrations in collective states of $gamma$-soft nuclei

72   0   0.0 ( 0 )
 نشر من قبل Kosuke Nomura
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In addition to shape oscillations, low-energy excitation spectra of deformed nuclei are also influenced by pairing vibrations. The simultaneous description of these collective modes and their coupling has been a long-standing problem in nuclear structure theory. Here we address the problem in terms of self-consistent mean-field calculations of collective deformation energy surfaces, and the framework of the interacting boson approximation. In addition to quadrupole shape vibrations and rotations, the explicit coupling to pairing vibrations is taken into account by a boson-number non-conserving Hamiltonian, specified by a choice of a universal density functional and pairing interaction. An illustrative calculation for $^{128}$Xe and $^{130}$Xe shows the importance of dynamical pairing degrees of freedom, especially for structures built on low-energy $0^+$ excited states, in $gamma$-soft and triaxial nuclei.



قيم البحث

اقرأ أيضاً

82 - J. Xiang , Z. P. Li , T. Niksic 2020
The quadrupole collective Hamiltonian, based on relativistic energy density functionals, is extended to include a pairing collective coordinate. In addition to quadrupole shape vibrations and rotations, the model describes pairing vibrations and the coupling between shape and pairing degrees of freedom. The parameters of the collective Hamiltonian are determined by constrained self-consistent relativistic mean-field plus Bardeen-Cooper-Schrieffer (RMF+BCS) calculations in the space of intrinsic shape and pairing deformations. The effect of coupling between shape and pairing degrees of freedom is analyzed in a study of low-energy spectra and transition rates of four axially symmetric $N=92$ rare-earth isotones. When compared to results obtained with the standard quadrupole collective Hamiltonian, the inclusion of dynamical pairing increases the moment of inertia, lowers the energies of excited $0^+$ states and reduces the E0-transition strengths, in better agreement with data.
We present a new analysis of the pairing vibrations around 56Ni, with emphasis on odd-odd nuclei. This analysis of the experimental excitation energies is based on the subtraction of average properties that include the full symmetry energy together w ith volume, surface and Coulomb terms. The results clearly indicate a collective behavior of the isovector pairing vibrations and do not support any appreciable collectivity in the isoscalar channel.
Evidence of strong coupling of quasiparticle excitations with gamma-vibration is shown to occur in transitional nuclei. High-spin band structures in [166,168,170,172]Er are studied by employing the recently developed multi-quasiparticle triaxial proj ected shell model approach. It is demonstrated that a low-lying K=3 band observed in these nuclei, the nature of which has remained unresolved, originates from the angular-momentum projection of triaxially deformed two-quasiparticle (qp) configurations. Further, it is predicted that the structure of this band depends critically on the shell filling: in [166]Er the lowest K=3 2-qp band is formed from proton configuration, in [168]Er the K=3 neutron and proton 2-qp bands are almost degenerate, and for [170]Er and [172]Er the neutron K=3 2-qp band becomes favored and can cross the gamma-vibrational band at high rotational frequencies. We consider that these are few examples in even-even nuclei, where the three basic modes of rotational, vibrational, and quasi-particle excitations co-exist close to the yrast line.
246 - Masayuki Matsuzaki 2011
Distribution of the two phonon $gamma$ vibrational collectivity in the rotating triaxial odd-$A$ nucleus, $^{103}$Nb, that is one of the three nuclides for which experimental data were reported recently, is calculated in the framework of the particle vibration coupling model based on the cranked shell model plus random phase approximation. This framework was previously utilized for analyses of the zero and one phonon bands in other mass region and is applied to the two phonon band for the first time. In the present calculation, three sequences of two phonon bands share collectivity almost equally at finite rotation whereas the $K=Omega+4$ state is the purest at zero rotation.
The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا