ﻻ يوجد ملخص باللغة العربية
Inspired by the recent experimental data (Phys. Lett. B {bf 675} (2009) 420), we extend the triaxial projected shell model approach to study the $gamma$-band structure in odd-mass nuclei. As a first application of the new development, the $gamma$-vibrational structure of $^{103}$Nb is investigated. It is demonstrated that the model describes the ground-state band and multi-phonon $gamma$-vibrations quite satisfactorily, supporting the interpretation of the data as one of the few experimentally-known examples of simultaneous occurrence of one- and two-$gamma$-phonon vibrational bands. This generalizes the well-known concept of the surface $gamma$-oscillation in deformed nuclei built on the ground-state in even-even systems to $gamma$-bands based on quasiparticle configurations in odd-mass systems.
We expand the triaxial projected shell model basis to include triaxially-deformed multi-quasiparticle states. This allows us to study the yrast and gamma-vibrational bands up to high spins for both gamma-soft and well-deformed nuclei. As the first ap
Doublet bands observed in $^{124,126,130,132}$Cs isotopes are studied using the recently developed multi-quasiparticle microscopic triaxial projected shell model (TPSM) approach. It is shown that TPSM results for energies and transition probabilities
Chiral rotation observed in $^{128}$Cs is studied using the newly developed microscopic triaxial projected shell model (TPSM) approach. The observed energy levels and the electromagnetic transition probabilities of the nearly degenerate chiral dipole
Distribution of the two phonon $gamma$ vibrational collectivity in the rotating triaxial odd-$A$ nucleus, $^{103}$Nb, that is one of the three nuclides for which experimental data were reported recently, is calculated in the framework of the particle
In this contribution, we present the cluster shell model which is analogous to the Nilsson model, but for cluster potentials. Special attention is paid to the consequences of the discrete symmetries of three alpha-particles in an equilateral triangle