ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping out the spin fluctuations in Co-doped LaFeAsO single crystals by NMR

106   0   0.0 ( 0 )
 نشر من قبل Hans-Joachim Grafe
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the phase diagram of LaFe$_{1-x}$Co$_x$AsO single crystals by using nuclear magnetic resonance (NMR). Up to a nominal doping of $x=0.03$, it follows the phase diagram for F-doped polycrystals. Above $x=0.03$, the F-doped samples become superconducting, whereas for Co-doping the structural and magnetic transitions can be observed up to $x=0.042$, and superconductivity occurs only for higher doping levels and with reduced transition temperatures. For dopings up to $x=0.056$, we find evidence for short-range magnetic order. By means of relaxation-rate measurements, we map out the magnetic fluctuations that reveal the interplay of nematicity and magnetism. Above the nematic ordering, the spin fluctuations in LaFe$_{1-x}$Co$_x$AsO are identical to those in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, suggesting that nematicity in LaFeAsO is a result of the fluctuating spin density wave as well.



قيم البحث

اقرأ أيضاً

Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce diso rder in the FeAs layer. For x = 0.05 antiferromagnetic order is destroyed and superconductivity is observed at Tconset = 11.2 K. For x = 0.11 superconductivity is observed at Tc(onset) = 14.3 K, and for x = 0.15 Tc = 6.0 K. Superconductivity is not observed for x = 0.2 and 0.5, but for x = 1, the material appears to be ferromagnetic (Tc ~ 56 K) as judged by magnetization measurements. We conclude that Co is an effective dopant to induce superconductivity. Somewhat surprisingly, the system appears to tolerate considerable disorder in the FeAs planes.
167 - M. Fu , D. A. Torchetti , T. Imai 2012
We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorho mbic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Our findings are consistent with the presence of a spin nematic state below T[TO] with an incipient magnetic order.
The longitudinal in-plane magnetoresistance (LMR) has been measured in different Ba(Fe_(1-x)Co_x)2As2 single crystals and in LiFeAs. For all these compounds, we find a negative LMR in the paramagnetic phase whose magnitude increases as H^2. We show t hat this negative LMR can be readily explained in terms of suppression of the spin fluctuations by the magnetic field. In the Co-doped samples, the absolute value of the LMR coefficient is found to decrease with doping content in the paramagnetic phase. The analysis of its T dependence in an itinerant nearly antiferromagnetic Fermi liquid model evidences that the LMR displays a qualitative change of T variation with increasing Co content. The latter occurs at optimal doping for which the antiferromagnetic ground state is suppressed. The same type of analysis for the negative LMR measured in LiFeAs suggests that this compound is on the verge of magnetism.
391 - K. Matano , G.L. Sun , D.L. Sun 2009
We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to unde rdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO$_{1-x}$F$_{x}$. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity.
We present $^{75}$As Nuclear Magnetic and Quadrupole Resonance results (NMR, NQR) on a new set of LaFeAsO$_{1-x}$F$_x$ polycrystalline samples. Improved synthesis conditions led to more homogenized samples with better control of the fluorine content. The structural$equiv$nematic, magnetic, and superconducting transition temperatures have been determined by NMR spin-lattice relaxation rate and AC susceptibility measurements. The so-determined phase diagram deviates from the published one especially for low F-doping concentrations. However, if the doping level is determined from the NQR spectra, both phase diagrams can be reconciled. The absence of bulk coexistence of magnetism and superconductivity and a nanoscale separation into low-doping-like and high-doping-like regions have been confirmed. Additional frequency dependent intensity, spin-spin, and spin-lattice relaxation rate measurements on underdoped samples at the boundary of magnetism and superconductivity indicate that orthorhombicity and magnetism originate from the low-doping-like regions, and superconductivity develops at first in the high-doping-like regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا