ﻻ يوجد ملخص باللغة العربية
We present $^{75}$As Nuclear Magnetic and Quadrupole Resonance results (NMR, NQR) on a new set of LaFeAsO$_{1-x}$F$_x$ polycrystalline samples. Improved synthesis conditions led to more homogenized samples with better control of the fluorine content. The structural$equiv$nematic, magnetic, and superconducting transition temperatures have been determined by NMR spin-lattice relaxation rate and AC susceptibility measurements. The so-determined phase diagram deviates from the published one especially for low F-doping concentrations. However, if the doping level is determined from the NQR spectra, both phase diagrams can be reconciled. The absence of bulk coexistence of magnetism and superconductivity and a nanoscale separation into low-doping-like and high-doping-like regions have been confirmed. Additional frequency dependent intensity, spin-spin, and spin-lattice relaxation rate measurements on underdoped samples at the boundary of magnetism and superconductivity indicate that orthorhombicity and magnetism originate from the low-doping-like regions, and superconductivity develops at first in the high-doping-like regions.
We report 19-F NMR investigation of the new high temperature superconductor LaFeAsO(0.89)F(0.11) (Tc ~ 28K). We demonstrate that low frequency spin fluctuations exhibit pseudo gap behavior above Tc. We also deduce the London penetration depth lambda from NMR line broadening below Tc.
We will probe the intrinsic behavior of spin susceptibility chi_(spin) in the LaFeAsO(1-x)F(x) superconductor (x ~ 0.1, Tc ~ 27K) using 19-F and 75-As NMR techniques. Our new results firmly establish the pseudo-gap behavior with Delta_(PG)/kB ~ 140K.
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spec
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce diso
We present the results of $^{75}$As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe$_2$As$_2$ under pressure ($p$). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation