ترغب بنشر مسار تعليمي؟ اضغط هنا

The homotopy classification of four-dimensional toric orbifolds

270   0   0.0 ( 0 )
 نشر من قبل Tseleung So
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ be a $4$-dimensional toric orbifold. If $H^3(X)$ has a non-trivial odd primary torsion, then we show that $X$ is homotopy equivalent to the wedge of a Moore space and a CW-complex. As a corollary, given two 4-dimensional toric orbifolds having no 2-torsion in the cohomology, we prove that they have the same homotopy type if and only their integral cohomology rings are isomorphic.



قيم البحث

اقرأ أيضاً

We classify a number of symmetry protected phases using Freed-Hopkins homotopy theoretic classification. Along the way we compute the low-dimensional homotopy groups of a number of novel cobordism spectra.
We find at least 527 new four-dimensional Fano manifolds, each of which is a complete intersection in a smooth toric Fano manifold.
We determine the number of distinct fibre homotopy types for the gauge groups of principal $Sp(2)$-bundles over a closed, simply-connected four-manifold.
We say that a complete nonsingular toric variety (called a toric manifold in this paper) is over $P$ if its quotient by the compact torus is homeomorphic to $P$ as a manifold with corners. Bott manifolds (or Bott towers) are toric manifolds over an $ n$-cube $I^n$ and blowing them up at a fixed point produces toric manifolds over $mathrm{vc}(I^n)$ an $n$-cube with one vertex cut. They are all projective. On the other hand, Odas $3$-fold, the simplest non-projective toric manifold, is over $mathrm{vc}(I^n)$. In this paper, we classify toric manifolds over $mathrm{vc}(I^n)$ $(nge 3)$ as varieties and also as smooth manifolds. As a consequence, it turns out that (1) there are many non-projective toric manifolds over $mathrm{vc}(I^n)$ but they are all diffeomorphic, and (2) toric manifolds over $mathrm{vc}(I^n)$ in some class are determined by their cohomology rings as varieties among toric manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا