ترغب بنشر مسار تعليمي؟ اضغط هنا

The homotopy types of $Sp(2)$-gauge groups over closed, simply-connected four-manifolds

236   0   0.0 ( 0 )
 نشر من قبل Tseleung So
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the number of distinct fibre homotopy types for the gauge groups of principal $Sp(2)$-bundles over a closed, simply-connected four-manifold.



قيم البحث

اقرأ أيضاً

115 - Tse Leung So 2016
Let $G$ be a simply-connected simple compact Lie group and let $M$ be an orientable smooth closed 4-manifold. In this paper we calculate the homotopy type of the suspension of $M$ and the homotopy types of the gauge groups of principal $G$-bundles ov er $M$ when $pi_1(M)$ is: (1)~$mathbb{Z}^{*m}$, (2)~$mathbb{Z}/p^rmathbb{Z}$, or (3)~$mathbb{Z}^{*m}*(*^n_{j=1}mathbb{Z}/p_j^{r_j}mathbb{Z})$, where $p$ and the $p_j$s are odd primes.
139 - Tseleung So 2018
Let $M$ be an orientable, simply-connected, closed, non-spin 4-manifold and let $mathcal{G}_k(M)$ be the gauge group of the principal $G$-bundle over $M$ with second Chern class $kinmathbb{Z}$. It is known that the homotopy type of $mathcal{G}_k(M)$ is determined by the homotopy type of $mathcal{G}_k(mathbb{CP}^2)$. In this paper we investigate properties of $mathcal{G}_k(mathbb{CP}^2)$ when $G = SU(n)$ that partly classify the homotopy types of the gauge groups.
Let $G$ be a compact connected Lie group with $pi_1(G)congmathbb{Z}$. We study the homotopy types of gauge groups of principal $G$-bundles over Riemann surfaces. This can be applied to an explicit computation of the homotopy groups of the moduli spaces of stable vector bundles over Riemann surfaces.
The $p$-local homotopy types of gauge groups of principal $G$-bundles over $S^4$ are classified when $G$ is a compact connected exceptional Lie group without $p$-torsion in homology except for $(G,p)=(mathrm{E}_7,5)$.
For every $k geq 2$ and $n geq 2$ we construct $n$ pairwise homotopically inequivalent simply-connected, closed $4k$-dimensional manifolds, all of which are stably diffeomorphic to one another. Each of these manifolds has hyperbolic intersection form and is stably parallelisable. In dimension $4$, we exhibit an analogous phenomenon for spin$^{c}$ structures on $S^2 times S^2$. For $mgeq 1$, we also provide similar $(4m{-}1)$-connected $8m$-dimensional examples, where the number of homotopy types in a stable diffeomorphism class is related to the order of the image of the stable $J$-homomorphism $pi_{4m-1}(SO) to pi^s_{4m-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا