ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2-dimensional stable homotopy hypothesis

170   0   0.0 ( 0 )
 نشر من قبل Niles Johnson
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the homotopy theory of Picard 2-categories is equivalent to that of stable 2-types.



قيم البحث

اقرأ أيضاً

Picard 2-categories are symmetric monoidal 2-categories with invertible 0-, 1-, and 2-cells. The classifying space of a Picard 2-category $mathcal{D}$ is an infinite loop space, the zeroth space of the $K$-theory spectrum $Kmathcal{D}$. This spectrum has stable homotopy groups concentrated in levels 0, 1, and 2. In this paper, we describe part of the Postnikov data of $Kmathcal{D}$ in terms of categorical structure. We use this to show that there is no strict skeletal Picard 2-category whose $K$-theory realizes the 2-truncation of the sphere spectrum. As part of the proof, we construct a categorical suspension, producing a Picard 2-category $Sigma C$ from a Picard 1-category $C$, and show that it commutes with $K$-theory in that $KSigma C$ is stably equivalent to $Sigma K C$.
The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as par t of the defining structure of an operad and not as the underlying category. We introduce a new dual category of higher cooperads, a new higher bar-cobar adjunction with the category of operads, and a new higher notion of homotopy operads, for which we establish the relevant homotopy properties. For instance, the higher bar-cobar construction provides us with a cofibrant replacement functor for operads over any ring. All these constructions are produced conceptually by applying the curved Koszul duality for colored operads. This paper is a first step toward a new Koszul duality theory for operads, where the action of the symmetric groups is properly taken into account.
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, b y showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
121 - Po Hu , Igor Kriz , Petr Somberg 2018
We set up foundations of representation theory over $S$, the sphere spectrum, which is the `initial ring of stable homotopy theory. In particular, we treat $S$-Lie algebras and their representations, characters, $gl_n(S)$-Verma modules and their dual s, Harish-Chandra pairs and Zuckermann functors. As an application, we construct a Khovanov $sl_k$-stable homotopy type with a large prime hypothesis, which is a new link invariant, using a stable homotopy analogue of the method of J.Sussan.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا