ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal growth and characterization of MgB2: Relation between structure and superconducting properties

347   0   0.0 ( 0 )
 نشر من قبل Sergey Lee
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the important aspects of synthesis and crystal growth of MgB2 under high pressure (P) and temperature (T) in Mg-B-N system, including the optimisation of P-T conditions for reproducible crystal growth, the role of liquid phases in this process, the temperature dependence of crystal size and the effect of growing instabilities on single crystals morphology. Extensive experiments have been carried out on single crystals with slightly different lattice constants and defects concentration, which revealed and possible effects of Mg-deficiency and lattice strain on the superconducting properties of MgB2 (Tc, Jc, residual resistivity ratio, anisotropy etc.).

قيم البحث

اقرأ أيضاً

72 - S.Lee , H.Mori , T.Masui 2001
Here we report the growth of sub-millimeter MgB2 single crystals of various shapes under high pressure in Mg-B-N system. Structure refinement using a single-crystal X-ray diffraction analysis gives lattice parameters a=3.0851(5) A and c=3.5201(5) A w ith small reliability factors (Rw =0.025, R=0.018), which enables us to analyze the Fourier and Fourier difference maps. The maps clearly show the B sp2 orbitals and covalency of the B-B bonds. The sharp superconducting transitions at Tc =38.1-38.3K were obtained in both magnetization (DTc =0.6K) and resistivity (DTc <0.3K) measurements. Resistivity measurements with magnetic fields applied parallel and perpendicular to the Mg and B sheets reveal the anisotropic nature of this compound, with upper critical field anisotropy ratio of about 2.7.
This review paper illustrates the main normal and superconducting state properties of magnesium diboride, a material known since early 1950s, but recently discovered to be superconductive at a remarkably high critical temperature Tc=40K for a binary compound. What makes MgB2 so special? Its high Tc, simple crystal structure, large coherence lengths, high critical current densities and fields, transparency of grain boundaries to current promises that MgB2 will be a good material for both large scale applications and electronic devices. During the last seven month, MgB2 has been fabricated in various forms, bulk, single crystals, thin films, tapes and wires. The largest critical current densities >10MA/cm2 and critical fields 40T are achieved for thin films. The anisotropy ratio inferred from upper critical field measurements is still to be resolved, a wide range of values being reported, between 1.2 and 9. Also there is no consensus about the existence of a single anisotropic or double energy gap. One central issue is whether or not MgB2 represents a new class of superconductors, being the tip of an iceberg who awaits to be discovered. Up to date MgB2 holds the record of the highest Tc in its class. However, the discovery of superconductivity in MgB2 revived the interest in non-oxides and initiated a search for superconductivity in related materials, several compounds being already announced to become superconductive: TaB2, BeB2.75, C-S composites, and the elemental B under pressure.
We report the effect of annealing on the superconductivity of MgB2 thin films as functions of the postannealing temperature in the range from 700 C to 950 C and of the postannealing time in the range from 30 min to 120 min. On annealing at 900 C for 30 min, we obtained the best-quality MgB2 films with a transition temperature of 39 K and a critical current density of ~ 10^7 A/cm^2. Using the scanning electron microscopy, we also investigated the film growth mechanism. The samples annealed at higher temperatures showed the larger grain sizes, well-aligned crystal structures with preferential orientations along the c-axis, and smooth surface morphologies. However, a longer annealing time prevented the alignment of grains and reduced the superconductivity, indicating a strong interfacial reaction between the substrate and the MgB2 film.
Orthorhombic (space group: Pnma) Nb2P5 is a high-pressure phase that is quenchable to ambient pressure, which could viewed as the zigzag infinite P chain-inserted NbP2. We report herein the high-pressure crystal growth of Nb2P5 and the discovery of i ts superconducting transition at Tc ~ 2.6 K. The electrical resistivity, magnetization, and specific heat capacity measurements on the high-quality crystal unveiled a conventional type-II weakly coupled s-wave nature of the superconductivity, with the upper critical field Hc2(0) ~ 0.5 T, the electron-phonon coupling strength {lambda}ep ~ 0.5 - 0.8, and the Ginzburg-Landau parameter k{appa} ~ 100. The ab initio calculations on the electronic band structure unveiled nodal-line structures protected by different symmetries. The one caused by band inversion, for example, on the {Gamma}-X and U-R paths of the Brillouin zone, likely could bring nontrivial topology and hence possible nontrivial surface state on the surface. The surface states on the (100), (010) and (110) surfaces were also calculated and discussed. The discovery of the phosphorus-rich Nb2P5 superconductor would be instructive for the design of more metal phosphides superconductors which might host unconventional superconductivity or potential technical applications.
We present the crystal structure and low temperature electronic transport properties of the intermetallic commonly known as BeB_2. In contrast to the much simpler AlB_2-type structure of the 39K superconductor MgB_2, BeB_2 forms a complex structure t ype that is nearly unique in nature. The structure has 110.5 atoms per unit cell and a stoichiometry BeB_{2.75}. Polycrystalline Be(^{10.8}B)_{2.75} is superconducting below T_c=0.72K with a critical magnetic field H_{c2}=0.175T. Isotopically pure ^{10.0}B samples of have an enhanced$T_c=0.79K, consistent with a BCS isotope effect. Hall effect measurements suggest that the material is intrinsically compensated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا