ﻻ يوجد ملخص باللغة العربية
Inferring programs which generate 2D and 3D shapes is important for reverse engineering, editing, and more. Training such inference models is challenging due to the lack of paired (shape, program) data in most domains. A popular approach is to pre-train a model on synthetic data and then fine-tune on real shapes using slow, unstable reinforcement learning. In this paper, we argue that self-training is a viable alternative for fine-tuning such models. Self-training is a semi-supervised learning paradigm where a model assigns pseudo-labels to unlabeled data, and then retrains with (data, pseudo-label) pairs as the new ground truth. We show that for constructive solid geometry and assembly-based modeling, self-training outperforms state-of-the-art reinforcement learning approaches. Additionally, shape program inference has a unique property that circumvents a potential downside of self-training (incorrect pseudo-label assignment): inferred programs are executable. For a given shape from our distribution of interest $mathbf{x}^*$ and its predicted program $mathbf{z}$, one can execute $mathbf{z}$ to obtain a shape $mathbf{x}$ and train on $(mathbf{z}, mathbf{x})$ pairs, rather than $(mathbf{z}, mathbf{x}^*)$ pairs. We term this procedure latent execution self training (LEST). We demonstrate that self training infers shape programs with higher shape reconstruction accuracy and converges significantly faster than reinforcement learning approaches, and in some domains, LEST can further improve this performance.
Novel view synthesis is a long-standing problem in machine learning and computer vision. Significant progress has recently been made in developing neural scene representations and rendering techniques that synthesize photorealistic images from arbitr
Many applications in 3D shape design and augmentation require the ability to make specific edits to an objects semantic parameters (e.g., the pose of a persons arm or the length of an airplanes wing) while preserving as much existing details as possi
Generating an interpretable and compact representation of 3D shapes from point clouds is an important and challenging problem. This paper presents CSG-Stump Net, an unsupervised end-to-end network for learning shapes from point clouds and discovering
Point clouds provide a compact and efficient representation of 3D shapes. While deep neural networks have achieved impressive results on point cloud learning tasks, they require massive amounts of manually labeled data, which can be costly and time-c
Manually authoring 3D shapes is difficult and time consuming; generative models of 3D shapes offer compelling alternatives. Procedural representations are one such possibility: they offer high-quality and editable results but are difficult to author