ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised Learning of Point Clouds via Orientation Estimation

120   0   0.0 ( 0 )
 نشر من قبل Omid Poursaeed
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Point clouds provide a compact and efficient representation of 3D shapes. While deep neural networks have achieved impressive results on point cloud learning tasks, they require massive amounts of manually labeled data, which can be costly and time-consuming to collect. In this paper, we leverage 3D self-supervision for learning downstream tasks on point clouds with fewer labels. A point cloud can be rotated in infinitely many ways, which provides a rich label-free source for self-supervision. We consider the auxiliary task of predicting rotations that in turn leads to useful features for other tasks such as shape classification and 3D keypoint prediction. Using experiments on ShapeNet and ModelNet, we demonstrate that our approach outperforms the state-of-the-art. Moreover, features learned by our model are complementary to other self-supervised methods and combining them leads to further performance improvement.



قيم البحث

اقرأ أيضاً

To date, various 3D scene understanding tasks still lack practical and generalizable pre-trained models, primarily due to the intricate nature of 3D scene understanding tasks and their immense variations introduced by camera views, lighting, occlusio ns, etc. In this paper, we tackle this challenge by introducing a spatio-temporal representation learning (STRL) framework, capable of learning from unlabeled 3D point clouds in a self-supervised fashion. Inspired by how infants learn from visual data in the wild, we explore the rich spatio-temporal cues derived from the 3D data. Specifically, STRL takes two temporally-correlated frames from a 3D point cloud sequence as the input, transforms it with the spatial data augmentation, and learns the invariant representation self-supervisedly. To corroborate the efficacy of STRL, we conduct extensive experiments on three types (synthetic, indoor, and outdoor) of datasets. Experimental results demonstrate that, compared with supervised learning methods, the learned self-supervised representation facilitates various models to attain comparable or even better performances while capable of generalizing pre-trained models to downstream tasks, including 3D shape classification, 3D object detection, and 3D semantic segmentation. Moreover, the spatio-temporal contextual cues embedded in 3D point clouds significantly improve the learned representations.
The problems of shape classification and part segmentation from 3D point clouds have garnered increasing attention in the last few years. Both of these problems, however, suffer from relatively small training sets, creating the need for statistically efficient methods to learn 3D shape representations. In this paper, we investigate the use of Approximate Convex Decompositions (ACD) as a self-supervisory signal for label-efficient learning of point cloud representations. We show that using ACD to approximate ground truth segmentation provides excellent self-supervision for learning 3D point cloud representations that are highly effective on downstream tasks. We report improvements over the state-of-the-art for unsupervised representation learning on the ModelNet40 shape classification dataset and significant gains in few-shot part segmentation on the ShapeNetPart dataset.Code available at https://github.com/matheusgadelha/PointCloudLearningACD
159 - Kaizhi Yang , Xuejin Chen 2021
Representing complex 3D objects as simple geometric primitives, known as shape abstraction, is important for geometric modeling, structural analysis, and shape synthesis. In this paper, we propose an unsupervised shape abstraction method to map a poi nt cloud into a compact cuboid representation. We jointly predict cuboid allocation as part segmentation and cuboid shapes and enforce the consistency between the segmentation and shape abstraction for self-learning. For the cuboid abstraction task, we transform the input point cloud into a set of parametric cuboids using a variational auto-encoder network. The segmentation network allocates each point into a cuboid considering the point-cuboid affinity. Without manual annotations of parts in point clouds, we design four novel losses to jointly supervise the two branches in terms of geometric similarity and cuboid compactness. We evaluate our method on multiple shape collections and demonstrate its superiority over existing shape abstraction methods. Moreover, based on our network architecture and learned representations, our approach supports various applications including structured shape generation, shape interpolation, and structural shape clustering.
Due to the scarcity of annotated scene flow data, self-supervised scene flow learning in point clouds has attracted increasing attention. In the self-supervised manner, establishing correspondences between two point clouds to approximate scene flow i s an effective approach. Previous methods often obtain correspondences by applying point-wise matching that only takes the distance on 3D point coordinates into account, introducing two critical issues: (1) it overlooks other discriminative measures, such as color and surface normal, which often bring fruitful clues for accurate matching; and (2) it often generates sub-par performance, as the matching is operated in an unconstrained situation, where multiple points can be ended up with the same corresponding point. To address the issues, we formulate this matching task as an optimal transport problem. The output optimal assignment matrix can be utilized to guide the generation of pseudo ground truth. In this optimal transport, we design the transport cost by considering multiple descriptors and encourage one-to-one matching by mass equality constraints. Also, constructing a graph on the points, a random walk module is introduced to encourage the local consistency of the pseudo labels. Comprehensive experiments on FlyingThings3D and KITTI show that our method achieves state-of-the-art performance among self-supervised learning methods. Our self-supervised method even performs on par with some supervised learning approaches, although we do not need any ground truth flow for training.
We develop a novel learning scheme named Self-Prediction for 3D instance and semantic segmentation of point clouds. Distinct from most existing methods that focus on designing convolutional operators, our method designs a new learning scheme to enhan ce point relation exploring for better segmentation. More specifically, we divide a point cloud sample into two subsets and construct a complete graph based on their representations. Then we use label propagation algorithm to predict labels of one subset when given labels of the other subset. By training with this Self-Prediction task, the backbone network is constrained to fully explore relational context/geometric/shape information and learn more discriminative features for segmentation. Moreover, a general associated framework equipped with our Self-Prediction scheme is designed for enhancing instance and semantic segmentation simultaneously, where instance and semantic representations are combined to perform Self-Prediction. Through this way, instance and semantic segmentation are collaborated and mutually reinforced. Significant performance improvements on instance and semantic segmentation compared with baseline are achieved on S3DIS and ShapeNet. Our method achieves state-of-the-art instance segmentation results on S3DIS and comparable semantic segmentation results compared with state-of-the-arts on S3DIS and ShapeNet when we only take PointNet++ as the backbone network.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا