ﻻ يوجد ملخص باللغة العربية
Training temporal action detection in videos requires large amounts of labeled data, yet such annotation is expensive to collect. Incorporating unlabeled or weakly-labeled data to train action detection model could help reduce annotation cost. In this work, we first introduce the Semi-supervised Action Detection (SSAD) task with a mixture of labeled and unlabeled data and analyze different types of errors in the proposed SSAD baselines which are directly adapted from the semi-supervised classification task. To alleviate the main error of action incompleteness (i.e., missing parts of actions) in SSAD baselines, we further design an unsupervised foreground attention (UFA) module utilizing the independence between foreground and background motion. Then we incorporate weakly-labeled data into SSAD and propose Omni-supervised Action Detection (OSAD) with three levels of supervision. An information bottleneck (IB) suppressing the scene information in non-action frames while preserving the action information is designed to help overcome the accompanying action-context confusion problem in OSAD baselines. We extensively benchmark against the baselines for SSAD and OSAD on our created data splits in THUMOS14 and ActivityNet1.2, and demonstrate the effectiveness of the proposed UFA and IB methods. Lastly, the benefit of our full OSAD-IB model under limited annotation budgets is shown by exploring the optimal annotation strategy for labeled, unlabeled and weakly-labeled data.
Spatio-temporal action detection in videos requires localizing the action both spatially and temporally in the form of an action tube. Nowadays, most spatio-temporal action detection datasets (e.g. UCF101-24, AVA, DALY) are annotated with action tube
Weakly-supervised temporal action localization aims to localize actions in untrimmed videos with only video-level action category labels. Most of previous methods ignore the incompleteness issue of Class Activation Sequences (CAS), suffering from tri
Temporal action detection (TAD) aims to determine the semantic label and the boundaries of every action instance in an untrimmed video. It is a fundamental and challenging task in video understanding and significant progress has been made. Previous m
Given a sufficiently large training dataset, it is relatively easy to train a modern convolution neural network (CNN) as a required image classifier. However, for the task of fish classification and/or fish detection, if a CNN was trained to detect o
Action Unit (AU) detection plays an important role for facial expression recognition. To the best of our knowledge, there is little research about AU analysis for micro-expressions. In this paper, we focus on AU detection in micro-expressions. Microe