ﻻ يوجد ملخص باللغة العربية
Weakly-supervised temporal action localization aims to localize actions in untrimmed videos with only video-level action category labels. Most of previous methods ignore the incompleteness issue of Class Activation Sequences (CAS), suffering from trivial localization results. To solve this issue, we introduce an adaptive mutual supervision framework (AMS) with two branches, where the base branch adopts CAS to localize the most discriminative action regions, while the supplementary branch localizes the less discriminative action regions through a novel adaptive sampler. The adaptive sampler dynamically updates the input of the supplementary branch with a sampling weight sequence negatively correlated with the CAS from the base branch, thereby prompting the supplementary branch to localize the action regions underestimated by the base branch. To promote mutual enhancement between these two branches, we construct mutual location supervision. Each branch leverages location pseudo-labels generated from the other branch as localization supervision. By alternately optimizing the two branches in multiple iterations, we progressively complete action regions. Extensive experiments on THUMOS14 and ActivityNet1.2 demonstrate that the proposed AMS method significantly outperforms the state-of-the-art methods.
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak s
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and
As a challenging task of high-level video understanding, weakly supervised temporal action localization has been attracting increasing attention. With only video annotations, most existing methods seek to handle this task with a localization-by-class
Weakly-Supervised Temporal Action Localization (WSTAL) aims to localize actions in untrimmed videos with only video-level labels. Currently, most state-of-the-art WSTAL methods follow a Multi-Instance Learning (MIL) pipeline: producing snippet-level