ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-Temporal Action Detection with Multi-Object Interaction

408   0   0.0 ( 0 )
 نشر من قبل Huijuan Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatio-temporal action detection in videos requires localizing the action both spatially and temporally in the form of an action tube. Nowadays, most spatio-temporal action detection datasets (e.g. UCF101-24, AVA, DALY) are annotated with action tubes that contain a single person performing the action, thus the predominant action detection models simply employ a person detection and tracking pipeline for localization. However, when the action is defined as an interaction between multiple objects, such methods may fail since each bounding box in the action tube contains multiple objects instead of one person. In this paper, we study the spatio-temporal action detection problem with multi-object interaction. We introduce a new dataset that is annotated with action tubes containing multi-object interactions. Moreover, we propose an end-to-end spatio-temporal action detection model that performs both spatial and temporal regression simultaneously. Our spatial regression may enclose multiple objects participating in the action. During test time, we simply connect the regressed bounding boxes within the predicted temporal duration using a simple heuristic. We report the baseline results of our proposed model on this new dataset, and also show competitive results on the standard benchmark UCF101-24 using only RGB input.

قيم البحث

اقرأ أيضاً

Action Unit (AU) detection plays an important role for facial expression recognition. To the best of our knowledge, there is little research about AU analysis for micro-expressions. In this paper, we focus on AU detection in micro-expressions. Microe xpression AU detection is challenging due to the small quantity of micro-expression databases, low intensity, short duration of facial muscle change, and class imbalance. In order to alleviate the problems, we propose a novel Spatio-Temporal Adaptive Pooling (STAP) network for AU detection in micro-expressions. Firstly, STAP is aggregated by a series of convolutional filters of different sizes. In this way, STAP can obtain multi-scale information on spatial and temporal domains. On the other hand, STAP contains less parameters, thus it has less computational cost and is suitable for micro-expression AU detection on very small databases. Furthermore, STAP module is designed to pool discriminative information for micro-expression AUs on spatial and temporal domains.Finally, Focal loss is employed to prevent the vast number of negatives from overwhelming the microexpression AU detector. In experiments, we firstly polish the AU annotations on three commonly used databases. We conduct intensive experiments on three micro-expression databases, and provide several baseline results on micro-expression AU detection. The results show that our proposed approach outperforms the basic Inflated inception-v1 (I3D) in terms of an average of F1- score. We also evaluate the performance of our proposed method on cross-database protocol. It demonstrates that our proposed approach is feasible for cross-database micro-expression AU detection. Importantly, the results on three micro-expression databases and cross-database protocol provide extensive baseline results for future research on micro-expression AU detection.
Training temporal action detection in videos requires large amounts of labeled data, yet such annotation is expensive to collect. Incorporating unlabeled or weakly-labeled data to train action detection model could help reduce annotation cost. In thi s work, we first introduce the Semi-supervised Action Detection (SSAD) task with a mixture of labeled and unlabeled data and analyze different types of errors in the proposed SSAD baselines which are directly adapted from the semi-supervised classification task. To alleviate the main error of action incompleteness (i.e., missing parts of actions) in SSAD baselines, we further design an unsupervised foreground attention (UFA) module utilizing the independence between foreground and background motion. Then we incorporate weakly-labeled data into SSAD and propose Omni-supervised Action Detection (OSAD) with three levels of supervision. An information bottleneck (IB) suppressing the scene information in non-action frames while preserving the action information is designed to help overcome the accompanying action-context confusion problem in OSAD baselines. We extensively benchmark against the baselines for SSAD and OSAD on our created data splits in THUMOS14 and ActivityNet1.2, and demonstrate the effectiveness of the proposed UFA and IB methods. Lastly, the benefit of our full OSAD-IB model under limited annotation budgets is shown by exploring the optimal annotation strategy for labeled, unlabeled and weakly-labeled data.
For a given video-based Human-Object Interaction scene, modeling the spatio-temporal relationship between humans and objects are the important cue to understand the contextual information presented in the video. With the effective spatio-temporal rel ationship modeling, it is possible not only to uncover contextual information in each frame but also to directly capture inter-time dependencies. It is more critical to capture the position changes of human and objects over the spatio-temporal dimension when their appearance features may not show up significant changes over time. The full use of appearance features, the spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance. In this paper, Spatio-Temporal Interaction Graph Parsing Networks (STIGPN) are constructed, which encode the videos with a graph composed of human and object nodes. These nodes are connected by two types of relations: (i) spatial relations modeling the interactions between human and the interacted objects within each frame. (ii) inter-time relations capturing the long range dependencies between human and the interacted objects across frame. With the graph, STIGPN learn spatio-temporal features directly from the whole video-based Human-Object Interaction scenes. Multi-modal features and a multi-stream fusion strategy are used to enhance the reasoning capability of STIGPN. Two Human-Object Interaction video datasets, including CAD-120 and Something-Else, are used to evaluate the proposed architectures, and the state-of-the-art performance demonstrates the superiority of STIGPN.
144 - Yang Du , Chunfeng Yuan , Bing Li 2018
Local features at neighboring spatial positions in feature maps have high correlation since their receptive fields are often overlapped. Self-attention usually uses the weighted sum (or other functions) with internal elements of each local feature to obtain its weight score, which ignores interactions among local features. To address this, we propose an effective interaction-aware self-attention model inspired by PCA to learn attention maps. Furthermore, since different layers in a deep network capture feature maps of different scales, we use these feature maps to construct a spatial pyramid and then utilize multi-scale information to obtain more accurate attention scores, which are used to weight the local features in all spatial positions of feature maps to calculate attention maps. Moreover, our spatial pyramid attention is unrestricted to the number of its input feature maps so it is easily extended to a spatio-temporal version. Finally, our model is embedded in general CNNs to form end-to-end attention networks for action classification. Experimental results show that our method achieves the state-of-the-art results on the UCF101, HMDB51 and untrimmed Charades.
Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level that are then linked or tracked across time. In this paper, we leverage the temporal continuity of videos instead of operating at the fr ame level. We propose the ACtion Tubelet detector (ACT-detector) that takes as input a sequence of frames and outputs tubelets, i.e., sequences of bounding boxes with associated scores. The same way state-of-the-art object detectors rely on anchor boxes, our ACT-detector is based on anchor cuboids. We build upon the SSD framework. Convolutional features are extracted for each frame, while scores and regressions are based on the temporal stacking of these features, thus exploiting information from a sequence. Our experimental results show that leveraging sequences of frames significantly improves detection performance over using individual frames. The gain of our tubelet detector can be explained by both more accurate scores and more precise localization. Our ACT-detector outperforms the state-of-the-art methods for frame-mAP and video-mAP on the J-HMDB and UCF-101 datasets, in particular at high overlap thresholds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا