ﻻ يوجد ملخص باللغة العربية
We propose a new model for augmenting algorithms with predictions by requiring that they are formally learnable and instance robust. Learnability ensures that predictions can be efficiently constructed from a reasonable amount of past data. Instance robustness ensures that the prediction is robust to modest changes in the problem input, where the measure of the change may be problem specific. Instance robustness insists on a smooth degradation in performance as a function of the change. Ideally, the performance is never worse than worst-case bounds. This also allows predictions to be objectively compared. We design online algorithms with predictions for a network flow allocation problem and restricted assignment makespan minimization. For both problems, two key properties are established: high quality predictions can be learned from a small sample of prior instances and these predictions are robust to errors that smoothly degrade as the underlying problem instance changes.
In the load balancing problem, introduced by Graham in the 1960s (SIAM J. of Appl. Math. 1966, 1969), jobs arriving online have to be assigned to machines so to minimize an objective defined on machine loads. A long line of work has addressed this pr
In this paper we consider neighborhood load balancing in the context of selfish clients. We assume that a network of n processors and m tasks is given. The processors may have different speeds and the tasks may have different weights. Every task is c
In the online load balancing problem on related machines, we have a set of jobs (with different sizes) arriving online, and we need to assign each job to a machine immediately upon its arrival, so as to minimize the makespan, i.e., the maximum comple
In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives
Set function optimization is essential in AI and machine learning. We focus on a subadditive set function that generalizes submodularity, and examine the subadditivity of non-submodular functions. We also deal with a minimax subadditive load balancin