ﻻ يوجد ملخص باللغة العربية
In the online load balancing problem on related machines, we have a set of jobs (with different sizes) arriving online, and we need to assign each job to a machine immediately upon its arrival, so as to minimize the makespan, i.e., the maximum completion time. In classic mechanism design problems, we assume that the jobs are controlled by selfish agents, with the sizes being their private information. Each job (agent) aims at minimizing its own cost, which is its completion time plus the payment charged by the mechanism. Truthful mechanisms guaranteeing that every job minimizes its cost by reporting its true size have been well-studied [Aspnes et al. JACM 1997, Feldman et al. EC 2017]. In this paper, we study truthful online load balancing mechanisms that are well-behaved [Epstein et al., MOR 2016]. Well-behavior is important as it guarantees fairness between machines, and implies truthfulness in some cases when machines are controlled by selfish agents. Unfortunately, existing truthful online load balancing mechanisms are not well-behaved. We first show that to guarantee producing a well-behaved schedule, any online algorithm (even non-truthful) has a competitive ratio at least $Omega(sqrt{m})$, where m is the number of machines. Then we propose a mechanism that guarantees truthfulness of the online jobs, and produces a schedule that is almost well-behaved. We show that our algorithm has a competitive ratio of $O(log m)$. Moreover, for the case when the sizes of online jobs are bounded, the competitive ratio of our algorithm improves to $O(1)$. Interestingly, we show several cases for which our mechanism is actually truthful against selfish machines.
We give the first polynomial-time approximation scheme (PTAS) for the stochastic load balancing problem when the job sizes follow Poisson distributions. This improves upon the 2-approximation algorithm due to Goel and Indyk (FOCS99). Moreover, our ap
In the load balancing problem, introduced by Graham in the 1960s (SIAM J. of Appl. Math. 1966, 1969), jobs arriving online have to be assigned to machines so to minimize an objective defined on machine loads. A long line of work has addressed this pr
Set function optimization is essential in AI and machine learning. We focus on a subadditive set function that generalizes submodularity, and examine the subadditivity of non-submodular functions. We also deal with a minimax subadditive load balancin
We consider the problem of deterministic load balancing of tokens in the discrete model. A set of $n$ processors is connected into a $d$-regular undirected network. In every time step, each processor exchanges some of its tokens with each of its neig
We study the online discrepancy minimization problem for vectors in $mathbb{R}^d$ in the oblivious setting where an adversary is allowed fix the vectors $x_1, x_2, ldots, x_n$ in arbitrary order ahead of time. We give an algorithm that maintains $O(s