ترغب بنشر مسار تعليمي؟ اضغط هنا

A long-period substellar object exhibiting a single transit in Kepler

100   0   0.0 ( 0 )
 نشر من قبل Samuel Quinn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a single transit-like signal in the Kepler data of the slightly evolved F star KIC4918810. The transit duration is ~45 hours, and while the orbital period ($Psim10$ years) is not well constrained, it is one of the longest among companions known to transit. We calculate the size of the transiting object to be $R_P = 0.910$ $R_J$. Objects of this size vary by orders of magnitude in their densities, encompassing masses between that of Saturn ($0.3$ $M_J$) and stars above the hydrogen-burning limit (~80 $M_J$). Radial-velocity observations reveal that the companion is unlikely to be a star. The mass posterior is bimodal, indicating a mass of either ~0.24 $M_J$ or ~26 $M_J$. Continued spectroscopic monitoring should either constrain the mass to be planetary or detect the orbital motion, the latter of which would yield a benchmark long-period brown dwarf with a measured mass, radius, and age.



قيم البحث

اقرأ أيضاً

In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the ${it Kepler}$ space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrogra ph. It orbits its host star with a period of 86.647661 d $pm$ 3 s and a high eccentricity of 0.772 $pm$ 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 $pm$ 0.05 Msun and 0.70 $ pm $ 0.07 Msun for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the ${it Kepler}$ transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 $ pm $ 0.35 Mjup, and a radius of 0.94 $ pm $ 0.12 Rjup, and thus a bulk density of 2.1 $ pm $ 1.2 g.cm$^{-3}$. The planet has an equilibrium temperature of 511 $pm$ 50 K, making it one of the few known members of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.
Context: We report the discovery of TOI-519 b (TIC 218795833), a transiting substellar object (R = 1.07 RJup) orbiting a faint M dwarf (V = 17.35) on a 1.26 d orbit. Brown dwarfs and massive planets orbiting M dwarfs on short-period orbits are rare, but more have already been discovered than expected from planet formation models. TOI-519 is a valuable addition into this group of unlikely systems, and adds towards our understanding of the boundaries of planet formation. Aims: We set out to determine the nature of the Transiting Exoplanet Survey Satellite (TESS ) object of interest TOI-519 b. Methods: Our analysis uses a SPOC-pipeline TESS light curve from Sector 7, multicolour transit photometry observed with MuSCAT2 and MuSCAT, and transit photometry observed with the LCOGT telescopes. We estimate the radius of the transiting object using multicolour transit modelling, and set upper limits for its mass, effective temperature, and Bond albedo using a phase curve model that includes Doppler boosting, ellipsoidal variations, thermal emission, and reflected light components. Results: TOI-519 b is a substellar object with a radius posterior median of 1.07 RJup and 5th and 95th percentiles of 0.66 and 1.20 RJup, respectively, where most of the uncertainty comes from the uncertainty in the stellar radius. The phase curve analysis sets an upper effective temperature limit of 1800 K, an upper Bond albedo limit of 0.49, and a companion mass upper limit of 14 MJup. The companion radius estimate combined with the Teff and mass limits suggests that the companion is more likely a planet than a brown dwarf, but a brown-dwarf scenario is more likely a priori given the lack of known massive planets in 1 day orbits around M dwarfs with Teff < 3800 K, and the existence of some (but few) brown dwarfs.
Fewer than 20 transiting Kepler planets have periods longer than one year. Our early search of the Kepler light curves revealed one such system, Kepler-1654 b (originally KIC~8410697b), which shows exactly two transit events and whose second transit occurred only 5 days before the failure of the second of two reaction wheels brought the primary Kepler mission to an end. A number of authors have also examined light curves from the Kepler mission searching for long period planets and identified this candidate. Starting in Sept. 2014 we began an observational program of imaging, reconnaissance spectroscopy and precision radial velocity measurements which confirm with a high degree of confidence that Kepler-1654 b is a {it bona fide} transiting planet orbiting a mature G2V star (T$_{eff}= 5580$K, [Fe/H]=-0.08) with a semi-major axis of 2.03 AU, a period of 1047.84 days and a radius of 0.82$pm$0.02 R$_{Jup}$. Radial Velocity (RV) measurements using Kecks HIRES spectrometer obtained over 2.5 years set a limit to the planets mass of $<0.5 (3sigma$) M$_{Jup}$. The bulk density of the planet is similar to that of Saturn or possibly lower. We assess the suitability of temperate gas giants like Kepler-1654b for transit spectroscopy with the James Webb Space Telescope since their relatively cold equilibrium temperatures (T$_{pl}sim 200$K) make them interesting from the standpoint of exo-planet atmospheric physics. Unfortunately, these low temperatures also make the atmospheric scale heights small and thus transmission spectroscopy challenging. Finally, the long time between transits can make scheduling JWST observations difficult---as is the case with Kepler-1654b.
We report the discovery of TOI 263.01 (TIC 120916706), a transiting substellar object (R = 0.87 RJup) orbiting a faint M3.5~V dwarf (V=18.97) on a 0.56~d orbit. We set out to determine the nature of the TESS planet candidate TOI 263.01 using ground-b ased multicolour transit photometry. The host star is faint, which makes RV confirmation challenging, but the large transit depth makes the candidate suitable for validation through multicolour photometry. Our analysis combines three transits observed simultaneously in r, i, and z_s bands using the MuSCAT2 multicolour imager, three LCOGT-observed transit light curves in g, r, and i bands, a TESS light curve from Sector 3, and a low-resolution spectrum for stellar characterisation observed with the ALFOSC spectrograph. We model the light curves with PyTransit using a transit model that includes a physics-based light contamination component that allows us to estimate the contamination from unresolved sources from the multicolour photometry. This allows us to derive the true planet-star radius ratio marginalised over the contamination allowed by the photometry, and, combined with the stellar radius, gives us a reliable estimate of the objects absolute radius. The ground-based photometry excludes contamination from unresolved sources with a significant colour difference to TOI 263. Further, contamination from sources of same stellar type as the host is constrained to levels where the true radius ratio posterior has a median of 0.217. The median radius ratio corresponds to an absolute planet radius of 0.87 RJup, which confirms the substellar nature of the planet candidate. The object is either a giant planet or a brown dwarf (BD) located deep inside the so-called brown dwarf desert. Both possibilities offer a challenge to current planet/BD formation models and makes 263.01 an object deserving of in-depth follow-up studies.
Transit timing variations of Kepler-410Ab were already reported in a few papers. Their semi-amplitude is about 14.5 minutes. In our previous paper, we found that the transit timing variations could be caused by the presence of a stellar companion in this system. Our main motivation for this paper was to investigate variation in a radial-velocity curve generated by this additional star in the system. We performed spectroscopic observation of Kepler-410 using three telescopes in Slovakia and Czech Republic. Using the cross-correlation function, we measured the radial velocities of the star Kepler-410A. We did not observe any periodic variation in a radial-velocity curve. Therefore, we rejected our previous hypothesis about additional stellar companion in the Kepler-410 system. We ran different numerical simulations to study mean-motion resonances with Kepler-410Ab. Observed transit timing variations could be also explained by the presence of a small planet near to mean-motion resonance 2:3 with Kepler-410Ab. This resonance is stable on a long-time scale. We also looked for stable regions in the Kepler-410 system where another planet could exist for a long time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا