ترغب بنشر مسار تعليمي؟ اضغط هنا

Proof of the Kakeya set conjecture over rings of integers modulo square-free $N$

144   0   0.0 ( 0 )
 نشر من قبل Manik Dhar
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Kakeya set $S subset (mathbb{Z}/Nmathbb{Z})^n$ is a set containing a line in each direction. We show that, when $N$ is any square-free integer, the size of the smallest Kakeya set in $(mathbb{Z}/Nmathbb{Z})^n$ is at least $C_{n,epsilon} N^{n - epsilon}$ for any $epsilon$ -- resolving a special case of a conjecture of Hickman and Wright. Previously, such bounds were only known for the case of prime $N$. We also show that the case of general $N$ can be reduced to lower bounding the $mathbb{F}_p$ rank of the incidence matrix of points and hyperplanes over $(mathbb{Z}/p^kmathbb{Z})^n$.



قيم البحث

اقرأ أيضاً

294 - Chengfei Xie , Gennian Ge 2020
A Nikodym set $mathcal{N}subseteq(mathbb{Z}/(Nmathbb{Z}))^n$ is a set containing $Lsetminus{x}$ for every $xin(mathbb{Z}/(Nmathbb{Z}))^n$, where $L$ is a line passing through $x$. We prove that if $N$ is square-free, then the size of every Nikodym se t is at least $c_nN^{n-o(1)}$, where $c_n$ only depends on $n$. This result is an extension of the result in the finite field case.
The commuting graph of a group G, denoted by Gamma(G), is the simple undirected graph whose vertices are the non-central elements of G and two distinct vertices are adjacent if and only if they commute. Let Z_m be the commutative ring of equivalence classes of integers modulo m. In this paper we investigate the connectivity and diameters of the commuting graphs of GL(n,Z_m) to contribute to the conjecture that there is a universal upper bound on diam(Gamma(G)) for any finite group G when Gamma(G) is connected. For any composite m, it is shown that Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) are connected and diam(Gamma(GL(n,Z_m))) = diam(Gamma(M(n,Z_m))) = 3. For m a prime, the instances of connectedness and absolute bounds on the diameters of Gamma(GL(n,Z_m)) and Gamma(M(n,Z_m)) when they are connected are concluded from previous results.
An integral coefficient matrix determines an integral arrangement of hyperplanes in R^m. After modulo q reduction, the same matrix determines an arrangement A_q of hyperplanes in Z^m. In the special case of central arrangements, Kamiya, Takemura and Terao [J. Algebraic Combin., to appear] showed that the cardinality of the complement of A_q in Z_q^m is a quasi-polynomial in q. Moreover, they proved in the central case that the intersection lattice of A_q is periodic from some q on. The present paper generalizes these results to the case of non-central arrangements. The paper also studies the arrangement B_m^{[0,a]} of Athanasiadis [J. Algebraic Combin. Vol.10 (1999), 207-225] to illustrate our results.
We study central hyperplane arrangements with integral coefficients modulo positive integers $q$. We prove that the cardinality of the complement of the hyperplanes is a quasi-polynomial in two ways, first via the theory of elementary divisors and th en via the theory of the Ehrhart quasi-polynomials. This result is useful for determining the characteristic polynomial of the corresponding real arrangement. With the former approach, we also prove that intersection lattices modulo $q$ are periodic except for a finite number of $q$s.
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with $n$ edges packs $2n+1$ times into the complete graph $K_{2n+1}$. In this paper, we prove this conjecture for large $n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا