ﻻ يوجد ملخص باللغة العربية
A Nikodym set $mathcal{N}subseteq(mathbb{Z}/(Nmathbb{Z}))^n$ is a set containing $Lsetminus{x}$ for every $xin(mathbb{Z}/(Nmathbb{Z}))^n$, where $L$ is a line passing through $x$. We prove that if $N$ is square-free, then the size of every Nikodym set is at least $c_nN^{n-o(1)}$, where $c_n$ only depends on $n$. This result is an extension of the result in the finite field case.
A Kakeya set $S subset (mathbb{Z}/Nmathbb{Z})^n$ is a set containing a line in each direction. We show that, when $N$ is any square-free integer, the size of the smallest Kakeya set in $(mathbb{Z}/Nmathbb{Z})^n$ is at least $C_{n,epsilon} N^{n - epsi
In this paper, we study dot-product sets and $k$-simplices in vector spaces over finite rings. We show that if $E$ is sufficiently large then the dot-product set of $E$ covers the whole ring. In higher dimensional cases, if $E$ is sufficiently large
We obtain local estimates, also called propagation of smallness or Remez-type inequalities, for analytic functions in several variables. Using Carleman estimates, we obtain a three sphere-type inequality, where the outer two spheres can be any sets s
We prove an asymptotically tight lower bound on the average size of independent sets in a triangle-free graph on $n$ vertices with maximum degree $d$, showing that an independent set drawn uniformly at random from such a graph has expected size at le
Let $mathbb{F}_p$ be a prime field, and ${mathcal E}$ a set in $mathbb{F}_p^2$. Let $Delta({mathcal E})={||x-y||: x,y in {mathcal E} }$, the distance set of ${mathcal E}$. In this paper, we provide a quantitative connection between the distance set $