ﻻ يوجد ملخص باللغة العربية
We investigate games played between Maker and Breaker on an infinite complete graph whose vertices are coloured with colours from a given set, each colour appearing infinitely often. The players alternately claim edges, Makers aim being to claim all edges of a sufficiently colourful infinite complete subgraph and Breakers aim being to prevent this. We show that if there are only finitely many colours then Maker can obtain a complete subgraph in which all colours appear infinitely often, but that Breaker can prevent this if there are infinitely many colours. Even when there are infinitely many colours, we show that Maker can obtain a complete subgraph in which infinitely many of the colours each appear infinitely often.
By now, the Maker-Breaker connectivity game on a complete graph $K_n$ or on a random graph $Gsim G_{n,p}$ is well studied. Recently, London and Pluhar suggested a variant in which Maker always needs to choose her edges in such a way that her graph st
We consider the Maker-Breaker positional game on the vertices of the $n$-dimensional hypercube ${0,1}^n$ with $k$-dimensional subcubes as winning sets. We describe a pairing strategy which allows Breaker to win when $k = n/4 +1$ in the case where $n$
Soon after his 1964 seminal paper on edge colouring, Vizing asked the following question: can an optimal edge colouring be reached from any given proper edge colouring through a series of Kempe changes? We answer this question in the affirmative for triangle-free graphs.
Following a given ordering of the edges of a graph $G$, the greedy edge colouring procedure assigns to each edge the smallest available colour. The minimum number of colours thus involved is the chromatic index $chi(G)$, and the maximum is the so-cal
An edge-coloured cycle is $rainbow$ if all edges of the cycle have distinct colours. For $kgeq 1$, let $mathcal{F}_{k}$ denote the family of all graphs with the property that any $k$ vertices lie on a cycle. For $Gin mathcal{F}_{k}$, a $k$-$rainbow$