ﻻ يوجد ملخص باللغة العربية
By now, the Maker-Breaker connectivity game on a complete graph $K_n$ or on a random graph $Gsim G_{n,p}$ is well studied. Recently, London and Pluhar suggested a variant in which Maker always needs to choose her edges in such a way that her graph stays connected. By their results it follows that for this connected version of the game, the threshold bias on $K_n$ and the threshold probability on $Gsim G_{n,p}$ for winning the game drastically differ from the corresponding values for the usual Maker-Breaker version, assuming Makers bias to be $1$. However, they observed that the threshold biases of bo
We investigate games played between Maker and Breaker on an infinite complete graph whose vertices are coloured with colours from a given set, each colour appearing infinitely often. The players alternately claim edges, Makers aim being to claim all
Number the cells of a (possibly infinite) chessboard in some way with the numbers 0, 1, 2, ... Consider the cells in order, placing a queen in a cell if and only if it would not attack any earlier queen. The problem is to determine the positions of t
We study a game where two players take turns selecting points of a convex geometry until the convex closure of the jointly selected points contains all the points of a given winning set. The winner of the game is the last player able to move. We deve
Maker-Breaker games are played on a hypergraph $(X,mathcal{F})$, where $mathcal{F} subseteq 2^X$ denotes the family of winning sets. Both players alternately claim a predefined amount of edges (called bias) from the board $X$, and Maker wins the game
We consider the Maker-Breaker positional game on the vertices of the $n$-dimensional hypercube ${0,1}^n$ with $k$-dimensional subcubes as winning sets. We describe a pairing strategy which allows Breaker to win when $k = n/4 +1$ in the case where $n$