ﻻ يوجد ملخص باللغة العربية
Following a given ordering of the edges of a graph $G$, the greedy edge colouring procedure assigns to each edge the smallest available colour. The minimum number of colours thus involved is the chromatic index $chi(G)$, and the maximum is the so-called Grundy chromatic index. Here, we are interested in the restricted case where the ordering of the edges builds the graph in a connected fashion. Let $chi_c(G)$ be the minimum number of colours involved following such an ordering. We show that it is NP-hard to determine whether $chi_c(G)>chi(G)$. We prove that $chi(G)=chi_c(G)$ if $G$ is bipartite, and that $chi_c(G)leq 4$ if $G$ is subcubic.
Soon after his 1964 seminal paper on edge colouring, Vizing asked the following question: can an optimal edge colouring be reached from any given proper edge colouring through a series of Kempe changes? We answer this question in the affirmative for triangle-free graphs.
A graph is apex if there is a vertex whose deletion makes the graph planar, and doublecross if it can be drawn in the plane with only two crossings, both incident with the infinite region in the natural sense. In 1966, Tutte conjectured that every tw
Let $G$ be a graph of order $n$ with an edge-coloring $c$, and let $delta^c(G)$ denote the minimum color degree of $G$. A subgraph $F$ of $G$ is called rainbow if all edges of $F$ have pairwise distinct colors. There have been a lot results on rainbo
We study the mixed Ramsey number maxR(n,K_m,K_r), defined as the maximum number of colours in an edge-colouring of the complete graph K_n, such that K_n has no monochromatic complete subgraph on m vertices and no rainbow complete subgraph on r vertic
Let $G$ be a simple graph with $ngeq4$ vertices and $d(x)+d(y)geq n+k$ for each edge $xyin E(G)$. In this work we prove that $G$ either contains a spanning closed trail containing any given edge set $X$ if $|X|leq k$, or $G$ is a well characterized g