ﻻ يوجد ملخص باللغة العربية
The discovery of terrestrial exoplanets is uncovering increasingly diverse architectures. Of particular interest are those systems that contain exoplanets at a variety of star-planet separations, allowing direct comparison of exoplanet evolution (comparative planetology). The Kepler-1649 system contains two terrestrial planets similar both in size and insolation flux to Venus and Earth, although their eccentricities remain largely unconstrained. Here we present results of dynamical studies of the system and the potential effects on climate. The eccentricities of the Kepler-1649 system are poorly constrained, and we show that there are dynamically viable regions for further terrestrial planets in between the two known planets for a limited range of eccentricities. We investigate the effect of eccentricity of the outer planet on the dynamics of both planets and show that this results in high-frequency (1000-3000 year) eccentricity oscillations in long-term stable configurations. We calculate the resulting effect of these eccentricity variations on insolation flux and present the results of 3D climate simulations for the habitable zone planet. Our simulations demonstrate that, despite large eccentricity variations, the planet can maintain stable climates with relatively small temperature variations on the substellar hemisphere for a variety of initial climate configurations. Such systems thus provide key opportunities to explore alternative Venus/Earth climate evolution scenarios.
Although our solar system features predominantly circular orbits, the exoplanets discovered so far indicate that this is the exception rather than the rule. This could have crucial consequences for exoplanet climates, both because eccentric terrestri
The exquisite photometry of Kepler has revealed reflected light from exoplanets, tidal distortion of host stars and Doppler beaming of a stars light due to its motion (Borucki 2016; Demory et al. 2012; Welsh et al. 2010; Bloemen et al. 2012). Esteves
In this paper, we investigate the conditions required for the 3 and 17 Earth mass solid planets in the Kepler-10 system to have formed through collisions and mergers within an initial population of embryos. By performing a large number of N-body simu
We have carried out an intensive study of photometric (Kepler Mission) and spectroscopic data on the system Kepler-2 (HAT-P-7A) using the dedicated software WinFitter. The mean individual data-point error of the normalized flux values for this system
The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the New