ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effects of Gravity on the Climate and Circulation of a Terrestrial Planet

69   0   0.0 ( 0 )
 نشر من قبل Stephen I. Thomson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the Newtonian gravitational acceleration, on its atmosphere and climate. We first demonstrate that if the atmosphere obeys the hydrostatic primitive equations, which are a very good approximation for most terrestrial atmospheres, and if the radiative forcing is unaltered, changes in gravity have no effect at all on the circulation except for a vertical rescaling. That is to say, the effects of gravity may be completely scaled away and the circulation is unaltered. However, if the atmosphere contains a dilute condensible that is radiatively active, such as water or methane, then an increase in gravity will generally lead to a cooling of the planet because the total path length of the condensible will be reduced as gravity increases, leading to a reduction in the greenhouse effect. Furthermore, the specific humidity will decrease, leading to changes in the moist adiabatic lapse rate, in the equator-to-pole heat transport, and in the surface energy balance because of changes in the sensible and latent fluxes. These effects are all demonstrated both by theoretical arguments and by numerical simulations with moist and dry general circulation models.

قيم البحث

اقرأ أيضاً

112 - G. Gilli , F. Forget , A. Spiga 2020
The impact of gravity waves (GW) on diurnal tides and the global circulation in the middle/upper atmosphere of Mars is investigated using a General Circulation Model (GCM). We have implemented a stochastic parameterization of non-orographic GW into t he Laboratoire de Meteorologie Dynamique (LMD) Mars GCM (LMD-MGCM) following an innovative approach. The source is assumed to be located above typical convective cells ($sim$ 250 Pa) and the effect of GW on the circulation and predicted thermal structure above 1 Pa ($sim$ 50 km) is analyzed. We focus on the comparison between model simulations and observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter during Martian Year 29. MCS data provide the only systematic measurements of the Martian mesosphere up to 80 km to date. The primary effect of GW is to damp the thermal tides by reducing the diurnal oscillation of the meridional and zonal winds. The GW drag reaches magnitudes of the order of 1 m/s/sol above 10$^{-2}$ Pa in the northern hemisphere winter solstice and produces major changes in the zonal wind field (from tens to hundreds of m/s), while the impact on the temperature field is relatively moderate (10-20K). It suggests that GW induced alteration of the meridional flow is the main responsible for the simulated temperature variation. The results also show that with the GW scheme included, the maximum day-night temperature difference due to the diurnal tide is around 10K, and the peak of the tide is shifted toward lower altitudes, in better agreement with MCS observations.
The macroturbulent atmospheric circulation of Earth-like planets mediates their equator-to-pole heat transport. For fast-rotating terrestrial planets, baroclinic instabilities in the mid-latitudes lead to turbulent eddies that act to transport heat p oleward. In this work, we derive a scaling theory for the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanet atmospheres. This theory is built on the work of Jansen & Ferrari (2013), and determines how unstable the atmosphere is to baroclinic instability (the baroclinic criticality) through a balance between the baroclinic eddy heat flux and radiative heating/cooling. We compare our scaling theory to General Circulation Model (GCM) simulations and find that the theoretical predictions for equator-to-pole temperature contrast and bulk lapse rate broadly agree with GCM experiments with varying rotation rate and surface pressure throughout the baroclincally unstable regime. Our theoretical results show that baroclinic instabilities are a strong control of heat transport in the atmospheres of Earth-like exoplanets, and our scalings can be used to estimate the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanets. These scalings can be tested by spectroscopic retrievals and full-phase light curves of terrestrial exoplanets with future space telescopes.
While recently discovered exotic new planet-types have both challenged our imaginations and broadened our knowledge of planetary system workings, perhaps the most compelling objective of exoplanet science is to detect and characterize habitable and p ossibly inhabited worlds orbiting in other star systems. For the foreseeable future, characterizations of extrasolar planets will be made via remote sensing of planetary spectroscopic and temporal signals, along with careful fitting of this data to advanced models of planets and their atmospheres. Terrestrial planets are small and significantly more challenging to observe compared to their larger gaseous brethren; however observatories coming on-line in the coming decade will begin to allow their characterization. Still, it is not enough to invest only in observational endeavors. Comprehensive modeling of planetary atmospheres is required in order to fully understand what it is that our grand telescopes see in the night-sky. In our quest to characterize habitable, and possibly inhabited worlds, 3D general circulation models (GCMs) should be used to evaluate potential climate states and their associated temporal and spatial dependent observable signals. 3D models allow for coupled, self-consistent, multi-dimensional simulations, which can realistically simulate the climates of terrestrial extrasolar planets. A complete theoretical understanding of terrestrial exoplanetary atmospheres, gained through comprehensive 3D modeling, is critical for interpreting spectra of exoplanets taken from current and planned instruments, and is critical for designing future missions that aim to measure spectra of potentially habitable exoplanets as one of their key science goals. We recommend continued institutional support for 3D GCM modeling teams that focus on planetary and exoplanetary applications.
Tidally locked exoplanets likely host global atmospheric circulations with a superrotating equatorial jet, planetary-scale stationary waves and thermally-driven overturning circulation. In this work, we show that each of these features can be separat ed from the total circulation by using a Helmholtz decomposition, which splits the circulation into rotational (divergence free) and divergent (vorticity free) components. This technique is applied to the simulated circulation of a terrestrial planet and a gaseous hot Jupiter. For both planets, the rotational component comprises the equatorial jet and stationary waves, and the divergent component contains the overturning circulation. Separating out each component allows us to evaluate their spatial structure and relative contribution to the total flow. In contrast with previous work, we show that divergent velocities are not negligible when compared with rotational velocities, and that divergent, overturning circulation takes the form of a single, roughly isotropic cell that ascends on the day-side and descends on the night-side. These conclusions are drawn for both the terrestrial case and the hot Jupiter. To illustrate the utility of the Helmholtz decomposition for studying atmospheric processes, we compute the contribution of each of the circulation components to heat transport from day- to night-side. Surprisingly, we find that the divergent circulation dominates day-night heat transport in the terrestrial case and accounts for around half of the heat transport for the hot Jupiter. The relative contributions of the rotational and divergent components to day-night heat transport are likely sensitive to multiple planetary parameters and atmospheric processes, and merit further study.
The recent detections of temperate terrestrial planets orbiting nearby stars and the promise of characterizing their atmospheres motivates a need to understand how the diversity of possible planetary parameters affects the climate of terrestrial plan ets. In this work, we investigate the atmospheric circulation and climate of terrestrial exoplanets orbiting both Sun-like and M-dwarf stars over a wide swath of possible planetary parameters, including the planetary rotation period, surface pressure, incident stellar flux, surface gravity, planetary radius, and cloud particle size. We do so using a general circulation model (GCM) that includes non-grey radiative transfer and the effects of clouds. The results from this suite of simulations generally show qualitatively similar dependencies of circulation and climate on planetary parameters as idealized GCMs, with quantitative differences due to the inclusion of additional model physics. Notably, we find that the effective cloud particle size is a key unknown parameter that can greatly affect the climate of terrestrial exoplanets. We confirm a transition between low and high dayside cloud coverage of synchronously rotating terrestrial planets with increasing rotation period. We determine that this cloud transition is due to eddy-driven convergence near the substellar point and should not be parameterization-dependent. Finally, we compute full-phase light curves from our simulations of planets orbiting M-dwarf stars, finding that changing incident stellar flux and rotation period affect observable properties of terrestrial exoplanets. Our GCM results can guide expectations for planetary climate over the broad range of possible terrestrial exoplanets that will be observed with future space telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا