ﻻ يوجد ملخص باللغة العربية
Although our solar system features predominantly circular orbits, the exoplanets discovered so far indicate that this is the exception rather than the rule. This could have crucial consequences for exoplanet climates, both because eccentric terrestrial exoplanets could have extreme seasonal variation, and because giant planets on eccentric orbits could excite Milankovitch-like variations of a potentially habitable terrestrial planet,A^os eccentricity, on timescales of thousands-to-millions of years. A particularly interesting implication concerns the fact that the Earth is thought to have gone through at least one globally frozen, snowball state in the last billion years that it presumably exited after several million years of buildup of greenhouse gases when the ice-cover shut off the carbonate-silicate cycle. Water-rich extrasolar terrestrial planets with the capacity to host life might be at risk of falling into similar snowball states. Here we show that if a terrestrial planet has a giant companion on a sufficiently eccentric orbit, it can undergo Milankovitch-like oscillations of eccentricity of great enough magnitude to melt out of a snowball state.
We report the discovery of eight new giant planets, and updated orbits for four known planets, orbiting dwarf and subgiant stars using the CORALIE, HARPS, and MIKE instruments as part of the Calan-Hertfordshire Extrasolar Planet Search. The planets h
In previous papers, we developed a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular. We considered systems with well separated components and different initial setups (e.g.
Since very recently, we acquired knowledge on the existence of comets in extrasolar planetary systems. The formation of comets together with planets around host stars now seems evident. As stars are often born in clusters of interstellar clouds, the
The discovery of terrestrial exoplanets is uncovering increasingly diverse architectures. Of particular interest are those systems that contain exoplanets at a variety of star-planet separations, allowing direct comparison of exoplanet evolution (com
The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The proper