ترغب بنشر مسار تعليمي؟ اضغط هنا

Flame Stability Analysis of Flame Spray Pyrolysis by Artificial Intelligence

59   0   0.0 ( 0 )
 نشر من قبل Marius Stan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Flame spray pyrolysis (FSP) is a process used to synthesize nanoparticles through the combustion of an atomized precursor solution; this process has applications in catalysts, battery materials, and pigments. Current limitations revolve around understanding how to consistently achieve a stable flame and the reliable production of nanoparticles. Machine learning and artificial intelligence algorithms that detect unstable flame conditions in real time may be a means of streamlining the synthesis process and improving FSP efficiency. In this study, the FSP flame stability is first quantified by analyzing the brightness of the flames anchor point. This analysis is then used to label data for both unsupervised and supervised machine learning approaches. The unsupervised learning approach allows for autonomous labelling and classification of new data by representing data in a reduced dimensional space and identifying combinations of features that most effectively cluster it. The supervised learning approach, on the other hand, requires human labeling of training and test data, but is able to classify multiple objects of interest (such as the burner and pilot flames) within the video feed. The accuracy of each of these techniques is compared against the evaluations of human experts. Both the unsupervised and supervised approaches can track and classify FSP flame conditions in real time to alert users of unstable flame conditions. This research has the potential to autonomously track and manage flame spray pyrolysis as well as other flame technologies by monitoring and classifying the flame stability.

قيم البحث

اقرأ أيضاً

Flame Spray Pyrolysis (FSP) is a manufacturing technique to mass produce engineered nanoparticles for applications in catalysis, energy materials, composites, and more. FSP instruments are highly dependent on a number of adjustable parameters, includ ing fuel injection rate, fuel-oxygen mixtures, and temperature, which can greatly affect the quality, quantity, and properties of the yielded nanoparticles. Optimizing FSP synthesis requires monitoring, analyzing, characterizing, and modifying experimental conditions.Here, we propose a hybrid CPU-GPU Difference of Gaussians (DoG)method for characterizing the volume distribution of unburnt solution, so as to enable near-real-time optimization and steering of FSP experiments. Comparisons against standard implementations show our method to be an order of magnitude more efficient. This surrogate signal can be deployed as a component of an online end-to-end pipeline that maximizes the synthesis yield.
We observed new effect which we called photonic flame effect (PFE). Several 3-dimensional photonic crystals (artificial opals) were posed on Cu plate at the temperature of liquid nitrogen (77K). Typical distance between them was 1-5 centimeters. Long -continued optical luminescence was excited in one of them by the ruby laser pulse. Analogous visible luminescence manifesting time delay appeared in other samples of the crystals. Experiments were realized for opal crystals and for nanocomposites (opals filled with nonlinear liquids).
137 - Ruixuan Liu , Yang Cao , Hong Chen 2020
Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users raw data. To ensure users privacy, differentially private federated learning has been intensively studied. The existi ng works are mainly based on the textit{curator model} or textit{local model} of differential privacy. However, both of them have pros and cons. The curator model allows greater accuracy but requires a trusted analyzer. In the local model where users randomize local data before sending them to the analyzer, a trusted analyzer is not required but the accuracy is limited. In this work, by leveraging the textit{privacy amplification} effect in the recently proposed shuffle model of differential privacy, we achieve the best of two worlds, i.e., accuracy in the curator model and strong privacy without relying on any trusted party. We first propose an FL framework in the shuffle model and a simple protocol (SS-Simple) extended from existing work. We find that SS-Simple only provides an insufficient privacy amplification effect in FL since the dimension of the model parameter is quite large. To solve this challenge, we propose an enhanced protocol (SS-Double) to increase the privacy amplification effect by subsampling. Furthermore, for boosting the utility when the model size is greater than the user population, we propose an advanced protocol (SS-Topk) with gradient sparsification techniques. We also provide theoretical analysis and numerical evaluations of the privacy amplification of the proposed protocols. Experiments on real-world dataset validate that SS-Topk improves the testing accuracy by 60.7% than the local model based FL.
FLAME is a high power laser system installed at the SPARC_LAB Test Facility in Frascati (Italy). The ultra-intense laser pulses are employed to study the interaction with matter for many purposes: electron acceleration through LWFA, ion and proton ge neration exploiting the TNSA mechanism, study of new radiation sources and development of new electron diagnostics. In this work, an overview of the FLAME laser system will be given, together with recent experimental results
Identifying and characterizing flame fronts is the most common task in the computer-assisted analysis of data obtained from imaging techniques such as planar laser-induced fluorescence (PLIF), laser Rayleigh scattering (LRS), or particle imaging velo cimetry (PIV). We present a novel edge and ridge (line) detection algorithm based on complex-valued wavelet-like analyzing functions -- so-called complex shearlets -- displaying several traits useful for the extraction of flame fronts. In addition to providing a unified approach to the detection of edges and ridges, our method inherently yields estimates of local tangent orientations and local curvatures. To examine the applicability for high-frequency recordings of combustion processes, the algorithm is applied to mock images distorted with varying degrees of noise and real-world PLIF images of both OH and CH radicals. Furthermore, we compare the performance of the newly proposed complex shearlet-based measure to well-established edge and ridge detection techniques such as the Canny edge detector, another shearlet-based edge detector, and the phase congruency measure.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا