ترغب بنشر مسار تعليمي؟ اضغط هنا

Shearlet-Based Detection of Flame Fronts

65   0   0.0 ( 0 )
 نشر من قبل Rafael Reisenhofer
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying and characterizing flame fronts is the most common task in the computer-assisted analysis of data obtained from imaging techniques such as planar laser-induced fluorescence (PLIF), laser Rayleigh scattering (LRS), or particle imaging velocimetry (PIV). We present a novel edge and ridge (line) detection algorithm based on complex-valued wavelet-like analyzing functions -- so-called complex shearlets -- displaying several traits useful for the extraction of flame fronts. In addition to providing a unified approach to the detection of edges and ridges, our method inherently yields estimates of local tangent orientations and local curvatures. To examine the applicability for high-frequency recordings of combustion processes, the algorithm is applied to mock images distorted with varying degrees of noise and real-world PLIF images of both OH and CH radicals. Furthermore, we compare the performance of the newly proposed complex shearlet-based measure to well-established edge and ridge detection techniques such as the Canny edge detector, another shearlet-based edge detector, and the phase congruency measure.

قيم البحث

اقرأ أيضاً

97 - Bo Jiang , Yongyi Lu , Xiying Li 2015
Although the object detection and recognition has received growing attention for decades, a robust fire and flame detection method is rarely explored. This paper presents an empirical study, towards a general and solid approach to fast detect fire an d flame in videos, with the applications in video surveillance and event retrieval. Our system consists of three cascaded steps: (1) candidate regions proposing by a background model, (2) fire region classifying with color-texture features and a dictionary of visual words, and (3) temporal verifying. The experimental evaluation and analysis are done for each step. We believe that it is a useful service to both academic research and real-world application. In addition, we release the software of the proposed system with the source code, as well as a public benchmark and data set, including 64 video clips covered both indoor and outdoor scenes under different conditions. We achieve an 82% Recall with 93% Precision on the data set, and greatly improve the performance by state-of-the-arts methods.
We present the first realistic 3D simulations of flame front instabilities during type I X-ray bursts. The unperturbed front is characterised by the balance between the pressure gradient and the Coriolis force of a spinning neutron star ({ u} = 450 H z in our case). This balance leads to a fast horizontal velocity field parallel to the flame front. This flow is strongly sheared in the vertical direction. When we perturb the front an instability quickly corrugates the front. We identify this instability as the baroclinic instability. Most importantly, the flame is not disrupted by the instability and there are two major consequences: the overall flame propagation speed is {sim} 10 times faster than in the unperturbed case and distinct flame vortices appear. The speedup is due to the corrugation of the front and the dynamics of the vortices. These vortices may also be linked to the oscillations observed in the lightcurves of the bursts.
Wildfires are one of the costliest and deadliest natural disasters in the US, causing damage to millions of hectares of forest resources and threatening the lives of people and animals. Of particular importance are risks to firefighters and operation al forces, which highlights the need for leveraging technology to minimize danger to people and property. FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) offers a dataset of aerial images of fires along with methods for fire detection and segmentation which can help firefighters and researchers to develop optimal fire management strategies. This paper provides a fire image dataset collected by drones during a prescribed burning piled detritus in an Arizona pine forest. The dataset includes video recordings and thermal heatmaps captured by infrared cameras. The captured videos and images are annotated and labeled frame-wise to help researchers easily apply their fire detection and modeling algorithms. The paper also highlights solutions to two machine learning problems: (1) Binary classification of video frames based on the presence [and absence] of fire flames. An Artificial Neural Network (ANN) method is developed that achieved a 76% classification accuracy. (2) Fire detection using segmentation methods to precisely determine fire borders. A deep learning method is designed based on the U-Net up-sampling and down-sampling approach to extract a fire mask from the video frames. Our FLAME method approached a precision of 92% and a recall of 84%. Future research will expand the technique for free burning broadcast fire using thermal images.
We study the effect of thermal noise on the propagation speed of a planar flame. We show that this out of equilibrium greatly amplifies the effect of thermal noise to yield macroscopic reductions in the flame speed over what is predicted by the noise -free model. Computations show that noise slows the flame significantly. The flame is modeled using Navier Stokes equations with appropriate diffusive transport terms and chemical kinetic mechanism of hydrogen/oxygen. Thermal noise is modeled within the continuum framework using a system of stochastic partial differential equations, with transport noise from fluctuating hydrodynamics and reaction noise from a poisson model. We use a full chemical kinetics model in order to get quantitatively meaningful results. We compute steady and dynamic flames using an operator split finite volume scheme. New characteristic boundary conditions avoid non-physical boundary layers at computational boundaries. New limiters prevent stochastic terms from introducing non-physical negative concentrations. This represents the first computation of a model with thermal noise is a system with this degree of physical detail.
Flame Spray Pyrolysis (FSP) is a manufacturing technique to mass produce engineered nanoparticles for applications in catalysis, energy materials, composites, and more. FSP instruments are highly dependent on a number of adjustable parameters, includ ing fuel injection rate, fuel-oxygen mixtures, and temperature, which can greatly affect the quality, quantity, and properties of the yielded nanoparticles. Optimizing FSP synthesis requires monitoring, analyzing, characterizing, and modifying experimental conditions.Here, we propose a hybrid CPU-GPU Difference of Gaussians (DoG)method for characterizing the volume distribution of unburnt solution, so as to enable near-real-time optimization and steering of FSP experiments. Comparisons against standard implementations show our method to be an order of magnitude more efficient. This surrogate signal can be deployed as a component of an online end-to-end pipeline that maximizes the synthesis yield.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا