ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Anomalous Skin Effect in Weyl Superconductors

68   0   0.0 ( 0 )
 نشر من قبل Matthew Foster
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a Weyl superconductor can absorb light via a novel surface-to-bulk mechanism, which we dub the topological anomalous skin effect. This occurs even in the absence of disorder for a single-band superconductor, and is facilitated by the topological splitting of the Hilbert space into bulk and chiral surface Majorana states. In the clean limit, the effect manifests as a characteristic absorption peak due to surface-bulk transitions. We also consider the effects of bulk disorder, using the Keldysh response theory. For weak disorder, the bulk response is reminiscent of the Mattis-Bardeen result for $s$-wave superconductors, with strongly suppressed spectral weight below twice the pairing energy, despite the presence of gapless Weyl points. For stronger disorder, the bulk response becomes more Drude-like and the $p$-wave features disappear. We show that the surface-bulk signal survives when combined with the bulk in the presence of weak disorder. The topological anomalous skin effect can therefore serve as a fingerprint for Weyl superconductivity. We also compute the Meissner response in the slab geometry, incorporating the effect of the surface states.

قيم البحث

اقرأ أيضاً

We propose a general theoretical framework for both constructing and diagnosing symmetry-protected higher-order topological superconductors using Kitaev building blocks, a higher-dimensional generalization of Kitaevs one-dimensional Majorana model. F or a given crystalline symmetry, the Kitaev building blocks serve as a complete basis to construct all possible Kitaev superconductors that satisfy the symmetry requirements. Based on this Kitaev construction, we identify a simple but powerful bulk Majorana counting rule that can unambiguously diagnose the existence of higher-order topology for all Kitaev superconductors. For a systematic construction, we propose two inequivalent stacking strategies using the Kitaev building blocks and provide minimal tight-binding models to explicitly demonstrate each stacking approach. Notably, some of our Kitaev superconductors host higher-order topology that cannot be captured by the existing symmetry indicators in the literature. Nevertheless, our Majorana counting rule does enable a correct diagnosis for these beyond-indicator models. We conjecture that all Wannierizable superconductors should yield a decomposition in terms of our Kitaev building blocks, up to adiabatic deformations. Based on this conjecture, we propose a universal diagnosis of higher-order topology that possibly works for all Wannierizable superconductors. We also present a realistic example of higher-order topological superconductors with fragile Wannier obstruction to verify our conjectured universal diagnosis. Our work paves the way for a complete topological theory for superconductors.
Fully gapped two-dimensional superconductors coupled to dynamical electromagnetism are known to exhibit topological order. In this work, we develop a unified low-energy description for spin-singlet paired states by deriving topological Chern-Simons f ield theories for $s$-wave, $d+id$, and chiral higher even-wave superconductors. These theories capture the quantum statistics and fusion rules of Bogoliubov quasiparticles and vortices and incorporate global continuous symmetries - specifically, spin rotation and conservation of magnetic flux - present in all singlet superconductors. For all such systems, we compute the Hall response for these symmetries and investigate the physics at the edge. In particular, the weakly-coupled phase of a chiral $d+id$ chiral state has a spin Hall coefficient $ u_s=2$ and a vanishing Hall response for the magnetic flux symmetry. We argue that the latter is a generic result for two-dimensional superconductors with gapped photons, thereby demonstrating the absence of a spontaneous magnetic field in the ground state of chiral superconductors. It is also shown that the Chern-Simons theories of chiral spin-singlet superconductors derived here fall into Kitaevs 16-fold classification of topological superconductors.
The proximity effect from a spin-triplet $p_x$-wave superconductor to a dirty normal-metal has been shown to result in various unusual electromagnetic properties, reflecting a cooperative relation between topologically protected zero-energy quasipart icles and odd-frequency Cooper pairs. However, because of a lack of candidate materials for spin-triplet $p_x$-wave superconductors, observing this effect has been difficult. In this paper, we demonstrate that the anomalous proximity effect, which is essentially equivalent to that of a spin-triplet $p_x$-wave superconductor, can occur in a semiconductor/high-$T_c$ cuprate superconductor hybrid device in which two potentials coexist: a spin-singlet $d$-wave pair potential and a spin--orbit coupling potential sustaining the persistent spin-helix state. As a result, we propose an alternative and promising route to observe the anomalous proximity effect related to the profound nature of topologically protected quasiparticles and odd-frequency Cooper pairs.
74 - Shingo Yonezawa 2016
This review introduces known candidates for bulk topological superconductors and categorizes them with time-reversal symmetry (TRS) and gap structures. Recent studies on two archetypal topological superconductors, TRS-broken Sr2RuO4 and TRS-preserved CuxBi2Se3, are described in some detail.
Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators. The Berry phase can be accessed via its contribution to the phase mismatch in quantum oscillation experiments, where electrons accumulate a phase as they traverse closed cyclotron orbits in momentum space. The high-temperature cuprate superconductors are a class of materials where the Berry phase is thus far unknown despite the large body of existing quantum oscillations data. In this report we present a systematic Berry phase analysis of Shubnikov - de Haas measurements on the hole-doped cuprates YBa$_2$Cu$_3$O$_{y}$, YBa$_2$Cu$_4$O$_8$, HgBa$_2$CuO$_{4 + delta}$, and the electron-doped cuprate Nd$_{2-x}$Ce$_x$CuO$_4$. For the hole-doped materials, a trivial Berry phase of 0 mod $2pi$ is systematically observed whereas the electron-doped Nd$_{2-x}$Ce$_x$CuO$_4$ exhibits a significant non-zero Berry phase. These observations set constraints on the nature of the high-field normal state of the cuprates and points towards contrasting behaviour between hole-doped and electron-doped materials. We discuss this difference in light of recent developments related to charge density-wave and broken time-reversal symmetry states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا