ﻻ يوجد ملخص باللغة العربية
Fully gapped two-dimensional superconductors coupled to dynamical electromagnetism are known to exhibit topological order. In this work, we develop a unified low-energy description for spin-singlet paired states by deriving topological Chern-Simons field theories for $s$-wave, $d+id$, and chiral higher even-wave superconductors. These theories capture the quantum statistics and fusion rules of Bogoliubov quasiparticles and vortices and incorporate global continuous symmetries - specifically, spin rotation and conservation of magnetic flux - present in all singlet superconductors. For all such systems, we compute the Hall response for these symmetries and investigate the physics at the edge. In particular, the weakly-coupled phase of a chiral $d+id$ chiral state has a spin Hall coefficient $ u_s=2$ and a vanishing Hall response for the magnetic flux symmetry. We argue that the latter is a generic result for two-dimensional superconductors with gapped photons, thereby demonstrating the absence of a spontaneous magnetic field in the ground state of chiral superconductors. It is also shown that the Chern-Simons theories of chiral spin-singlet superconductors derived here fall into Kitaevs 16-fold classification of topological superconductors.
Topological crystalline superconductors are known to have possible higher-order topology, which results in Majorana modes on $d-2$ or lower dimensional boundaries. Given the rich possibilities of boundary signatures, it is desirable to have topologic
We propose a general theoretical framework for both constructing and diagnosing symmetry-protected higher-order topological superconductors using Kitaev building blocks, a higher-dimensional generalization of Kitaevs one-dimensional Majorana model. F
We present a theory of magnetic response in a finite-size two-dimensional superconductors with Rashba spin-orbit coupling. The interplay between the latter and an in-plane Zeeman field leads on the one hand to an out-of-plane spin polarization which
Topological crystalline superconductors have attracted rapidly rising attention due to the possibility of higher-order phases, which support Majorana modes on boundaries in $d-2$ or lower dimensions. However, although the classification and bulk topo
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-co