ﻻ يوجد ملخص باللغة العربية
We propose a general theoretical framework for both constructing and diagnosing symmetry-protected higher-order topological superconductors using Kitaev building blocks, a higher-dimensional generalization of Kitaevs one-dimensional Majorana model. For a given crystalline symmetry, the Kitaev building blocks serve as a complete basis to construct all possible Kitaev superconductors that satisfy the symmetry requirements. Based on this Kitaev construction, we identify a simple but powerful bulk Majorana counting rule that can unambiguously diagnose the existence of higher-order topology for all Kitaev superconductors. For a systematic construction, we propose two inequivalent stacking strategies using the Kitaev building blocks and provide minimal tight-binding models to explicitly demonstrate each stacking approach. Notably, some of our Kitaev superconductors host higher-order topology that cannot be captured by the existing symmetry indicators in the literature. Nevertheless, our Majorana counting rule does enable a correct diagnosis for these beyond-indicator models. We conjecture that all Wannierizable superconductors should yield a decomposition in terms of our Kitaev building blocks, up to adiabatic deformations. Based on this conjecture, we propose a universal diagnosis of higher-order topology that possibly works for all Wannierizable superconductors. We also present a realistic example of higher-order topological superconductors with fragile Wannier obstruction to verify our conjectured universal diagnosis. Our work paves the way for a complete topological theory for superconductors.
Topological insulators (TIs) having intrinsic or proximity-coupled s-wave superconductivity host Majorana zero modes (MZMs) at the ends of vortex lines. The MZMs survive up to a critical doping of the TI at which there is a vortex phase transition th
Fully gapped two-dimensional superconductors coupled to dynamical electromagnetism are known to exhibit topological order. In this work, we develop a unified low-energy description for spin-singlet paired states by deriving topological Chern-Simons f
We show that a Weyl superconductor can absorb light via a novel surface-to-bulk mechanism, which we dub the topological anomalous skin effect. This occurs even in the absence of disorder for a single-band superconductor, and is facilitated by the top
Topological crystalline superconductors have attracted rapidly rising attention due to the possibility of higher-order phases, which support Majorana modes on boundaries in $d-2$ or lower dimensions. However, although the classification and bulk topo
Monolayer WTe$_2$, a centrosymmetric transition metal dichacogenide, has recently been established as a quantum spin Hall insulator and found superconducting upon gating. Here we study the pairing symmetry and topological nature of superconducting WT