ﻻ يوجد ملخص باللغة العربية
Quantum squeezing, a major resource for quantum information processing and quantum metrology, is best analyzed in terms of the field quadratures - the quantum optical analogues of position and momentum, which form the continuous-variable formalism of quantum light. Degenerate squeezing admits a very helpful and simple description in terms of the single-mode quadrature operators, but the non-degenerate case, i.e. when the squeezing involves pairs of modes, requires a more complicated treatment involving correlations between the quadratures of the different modes. We introduce a generalized set of complex quadrature operators that treats degenerate and non-degenerate squeezing on equal footing. We describe the mode-pairs (and photon-pairs) as a single entity, generalizing the concept of single-mode quadrature operators to two-mode fields of any bandwidth. These complex operators completely describe the SU(1,1) algebra of two-photon devices and directly relate to observable physical quantities, like power and visibility. Based on this formalism, we discuss the measurement of optically-broad squeezed signals with direct detection, and present a compact set of phase-dependent observables that completely and intuitively determine the two-mode squeezed state, and quantify the degree of inseparability and entanglement between the modes.
I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett.
Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have been proposed for discrete-variable (
Optical telecommunication is at the heart of todays internet and is currently enabled by the transmission of intense optical signals between remote locations. As we look to the future of telecommunication, quantum mechanics promise new ways to be abl
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which
The addition of a photon into the same mode as a coherent state produces a nonclassical state that has interesting features, including quadrature squeezing and a sub-Poissonian photon-number distribution. The squeezed nature of photon-added coherent