ترغب بنشر مسار تعليمي؟ اضغط هنا

Repeaters for Continuous Variable Quantum Communication

199   0   0.0 ( 0 )
 نشر من قبل William Munro
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical telecommunication is at the heart of todays internet and is currently enabled by the transmission of intense optical signals between remote locations. As we look to the future of telecommunication, quantum mechanics promise new ways to be able to transmit and process that information. Demonstrations of quantum key distribution and quantum teleportation using multi-photon states have been performed, but only over ranges limited to one hundred kilometers. To go beyond this, we need repeaters that are compatible with these quantum multi-photon continuous variables pulses. Here we present a design for a continuous variable quantum repeaters that can distribute entangled and pure two-mode squeezed states over arbitrarily long distances with a success probability that scales only polynomially with distance. The proposed quantum repeater is composed from several basic known building blocks such as non-Gaussian operations for entanglement distillation and an iterative Gaussification protocol (for retaining the Gaussian character of the final state), but complemented with a heralded non-Gaussian entanglement swapping protocol, which allows us to avoid extensive iterations of quantum Gaussification. We characterize the performance of this scheme in terms of key rates for quantum key distribution and show a secure key can be generated over thousands of kilometers.



قيم البحث

اقرأ أيضاً

We investigate estimation of fluctuating channels and its effect on security of continuous-variable quantum key distribution. We propose a novel estimation scheme which is based on the clusterization of the estimated transmittance data. We show that uncertainty about whether the transmittance is fixed or not results in a lower key rate. However, if the total number of measurements is large, one can obtain using our method a key rate similar to the non-fluctuating channel even for highly fluctuating channels. We also verify our theoretical assumptions using experimental data from an atmospheric quantum channel. Our method is therefore promising for secure quantum communication over strongly fluctuating turbulent atmospheric channels.
Quantum repeaters are essential ingredients for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable qua ntum information have been extensively studied; while continuous-variable (CV) quantum information underpins a variety of quantum sensing and communication application, a quantum-repeater architecture for genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-repeater architecture based on CV quantum teleportation assisted by the Gottesman-Kitaev-Preskill (GKP) code to significantly suppress the physical noise. The designed CV quantum-repeater architecture is shown to significantly improve the performance of CV quantum key distribution, entanglement-assisted communication, and target detection based on quantum illumination, as three representative use cases for quantum communication and sensing.
One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rat e. This introduces a tradeoff between the secret key rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-variable (CV) QKD is not subject to this constraint as the whole raw keys can be used for both parameter estimation and secret key generation, without compromising the security. First we show that this property holds for measurement-device independent (MDI) protocols, as a consequence of the fact that in an MDI protocol the correlations between Alice and Bob are post-selected by the measurement performed by an untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI protocols can simulate device-dependent one-way QKD with arbitrarily high precision.
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
We address parameter estimation for complex/structured systems and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, an d obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e. the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature and the interaction time. Upon investigating the Fisher information of feasible measurements we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا