ﻻ يوجد ملخص باللغة العربية
Optical telecommunication is at the heart of todays internet and is currently enabled by the transmission of intense optical signals between remote locations. As we look to the future of telecommunication, quantum mechanics promise new ways to be able to transmit and process that information. Demonstrations of quantum key distribution and quantum teleportation using multi-photon states have been performed, but only over ranges limited to one hundred kilometers. To go beyond this, we need repeaters that are compatible with these quantum multi-photon continuous variables pulses. Here we present a design for a continuous variable quantum repeaters that can distribute entangled and pure two-mode squeezed states over arbitrarily long distances with a success probability that scales only polynomially with distance. The proposed quantum repeater is composed from several basic known building blocks such as non-Gaussian operations for entanglement distillation and an iterative Gaussification protocol (for retaining the Gaussian character of the final state), but complemented with a heralded non-Gaussian entanglement swapping protocol, which allows us to avoid extensive iterations of quantum Gaussification. We characterize the performance of this scheme in terms of key rates for quantum key distribution and show a secure key can be generated over thousands of kilometers.
We investigate estimation of fluctuating channels and its effect on security of continuous-variable quantum key distribution. We propose a novel estimation scheme which is based on the clusterization of the estimated transmittance data. We show that
Quantum repeaters are essential ingredients for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable qua
One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rat
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which
We address parameter estimation for complex/structured systems and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, an