ﻻ يوجد ملخص باللغة العربية
The addition of a photon into the same mode as a coherent state produces a nonclassical state that has interesting features, including quadrature squeezing and a sub-Poissonian photon-number distribution. The squeezed nature of photon-added coherent (PAC) states potentially offers an advantage in quantum sensing applications. Previous theoretical works have employed a single-mode treatment of PAC states. Here, we use a continuous-mode approach that allows us to model PAC state pulses. We study the properties of a single-photon and coherent state wavepacket superimposed with variable temporal and spectral overlap. We show that, even without perfect overlap, the state exhibits a sub-Poissonian number distribution, second-order quantum correlations and quadrature squeezing for a weak coherent state. We also include propagation loss in waveguides and study how the fidelity and other properties of PAC state pulses are affected.
Probabilistic amplification through photon addition, at the output of an Mach-Zehnder interferometer is discussed for a coherent input state. When a metric of signal to noise ratio is considered, nondeterministic, noiseless amplification of a coheren
We obtain and investigate the regular eigenfunctions of simple differential operators x^r d^{r+1}/dx^{r+1}, r=1, 2, ... with the eigenvalues equal to one. With the help of these eigenfunctions we construct a non-unitary analogue of boson displacement
Travelling modes of single-photon-added coherent states (SPACS) are characterized via optical homodyne tomography. Given a set of experimentally measured quadrature distributions, we estimate parameters of the state and also extract information about
We report the experimental reconstruction of a nonclassicality quasiprobability for a single-photon added thermal state. This quantity has significant negativities, which is necessary and sufficient for the nonclassicality of the quantum state. Our m
I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett.