ﻻ يوجد ملخص باللغة العربية
Previous studies have confirmed the effectiveness of leveraging articulatory information to attain improved speech enhancement (SE) performance. By augmenting the original acoustic features with the place/manner of articulatory features, the SE process can be guided to consider the articulatory properties of the input speech when performing enhancement. Hence, we believe that the contextual information of articulatory attributes should include useful information and can further benefit SE. In this study, we propose an SE system that incorporates contextual articulatory information; such information is obtained using broad phone class (BPC) end-to-end automatic speech recognition (ASR). Meanwhile, two training strategies are developed to train the SE system based on the BPC-based ASR: multitask-learning and deep-feature training strategies. Experimental results on the TIMIT dataset confirm that the contextual articulatory information facilitates an SE system in achieving better results. Moreover, in contrast to another SE system that is trained with monophonic ASR, the BPC-based ASR (providing contextual articulatory information) can improve the SE performance more effectively under different signal-to-noise ratios(SNR).
Articulatory-to-acoustic (A2A) synthesis refers to the generation of audible speech from captured movement of the speech articulators. This technique has numerous applications, such as restoring oral communication to people who cannot longer speak du
In recent years, waveform-mapping-based speech enhancement (SE) methods have garnered significant attention. These methods generally use a deep learning model to directly process and reconstruct speech waveforms. Because both the input and output are
Recurrent neural networks using the LSTM architecture can achieve significant single-channel noise reduction. It is not obvious, however, how to apply them to multi-channel inputs in a way that can generalize to new microphone configurations. In cont
In this paper, we propose the coarse-to-fine optimization for the task of speech enhancement. Cosine similarity loss [1] has proven to be an effective metric to measure similarity of speech signals. However, due to the large variance of the enhanced
Speech enhancement (SE) aims to improve speech quality and intelligibility, which are both related to a smooth transition in speech segments that may carry linguistic information, e.g. phones and syllables. In this study, we propose a novel phone-for