ترغب بنشر مسار تعليمي؟ اضغط هنا

Speech enhancement guided by contextual articulatory information

91   0   0.0 ( 0 )
 نشر من قبل Yen-Ju Lu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies have confirmed the effectiveness of leveraging articulatory information to attain improved speech enhancement (SE) performance. By augmenting the original acoustic features with the place/manner of articulatory features, the SE process can be guided to consider the articulatory properties of the input speech when performing enhancement. Hence, we believe that the contextual information of articulatory attributes should include useful information and can further benefit SE. In this study, we propose an SE system that incorporates contextual articulatory information; such information is obtained using broad phone class (BPC) end-to-end automatic speech recognition (ASR). Meanwhile, two training strategies are developed to train the SE system based on the BPC-based ASR: multitask-learning and deep-feature training strategies. Experimental results on the TIMIT dataset confirm that the contextual articulatory information facilitates an SE system in achieving better results. Moreover, in contrast to another SE system that is trained with monophonic ASR, the BPC-based ASR (providing contextual articulatory information) can improve the SE performance more effectively under different signal-to-noise ratios(SNR).



قيم البحث

اقرأ أيضاً

Articulatory-to-acoustic (A2A) synthesis refers to the generation of audible speech from captured movement of the speech articulators. This technique has numerous applications, such as restoring oral communication to people who cannot longer speak du e to illness or injury. Most successful techniques so far adopt a supervised learning framework, in which time-synchronous articulatory-and-speech recordings are used to train a supervised machine learning algorithm that can be used later to map articulator movements to speech. This, however, prevents the application of A2A techniques in cases where parallel data is unavailable, e.g., a person has already lost her/his voice and only articulatory data can be captured. In this work, we propose a solution to this problem based on the theory of multi-view learning. The proposed algorithm attempts to find an optimal temporal alignment between pairs of non-aligned articulatory-and-acoustic sequences with the same phonetic content by projecting them into a common latent space where both views are maximally correlated and then applying dynamic time warping. Several variants of this idea are discussed and explored. We show that the quality of speech generated in the non-aligned scenario is comparable to that obtained in the parallel scenario.
In recent years, waveform-mapping-based speech enhancement (SE) methods have garnered significant attention. These methods generally use a deep learning model to directly process and reconstruct speech waveforms. Because both the input and output are in waveform format, the waveform-mapping-based SE methods can overcome the distortion caused by imperfect phase estimation, which may be encountered in spectral-mapping-based SE systems. So far, most waveform-mapping-based SE methods have focused on single-channel tasks. In this paper, we propose a novel fully convolutional network (FCN) with Sinc and dilated convolutional layers (termed SDFCN) for multichannel SE that operates in the time domain. We also propose an extended version of SDFCN, called the residual SDFCN (termed rSDFCN). The proposed methods are evaluated on two multichannel SE tasks, namely the dual-channel inner-ear microphones SE task and the distributed microphones SE task. The experimental results confirm the outstanding denoising capability of the proposed SE systems on both tasks and the benefits of using the residual architecture on the overall SE performance.
Recurrent neural networks using the LSTM architecture can achieve significant single-channel noise reduction. It is not obvious, however, how to apply them to multi-channel inputs in a way that can generalize to new microphone configurations. In cont rast, spatial clustering techniques can achieve such generalization, but lack a strong signal model. This paper combines the two approaches to attain both the spatial separation performance and generality of multichannel spatial clustering and the signal modeling performance of multiple parallel single-channel LSTM speech enhancers. The system is compared to several baselines on the CHiME3 dataset in terms of speech quality predicted by the PESQ algorithm and word error rate of a recognizer trained on mis-matched conditions, in order to focus on generalization. Our experiments show that by combining the LSTM models with the spatial clustering, we reduce word error rate by 4.6% absolute (17.2% relative) on the development set and 11.2% absolute (25.5% relative) on test set compared with spatial clustering system, and reduce by 10.75% (32.72% relative) on development set and 6.12% absolute (15.76% relative) on test data compared with LSTM model.
104 - Jian Yao , Ahmad Al-Dahle 2019
In this paper, we propose the coarse-to-fine optimization for the task of speech enhancement. Cosine similarity loss [1] has proven to be an effective metric to measure similarity of speech signals. However, due to the large variance of the enhanced speech with even the same cosine similarity loss in high dimensional space, a deep neural network learnt with this loss might not be able to predict enhanced speech with good quality. Our coarse-to-fine strategy optimizes the cosine similarity loss for different granularities so that more constraints are added to the prediction from high dimension to relatively low dimension. In this way, the enhanced speech will better resemble the clean speech. Experimental results show the effectiveness of our proposed coarse-to-fine optimization in both discriminative models and generative models. Moreover, we apply the coarse-to-fine strategy to the adversarial loss in generative adversarial network (GAN) and propose dynamic perceptual loss, which dynamically computes the adversarial loss from coarse resolution to fine resolution. Dynamic perceptual loss further improves the accuracy and achieves state-of-the-art results compared with other generative models.
Speech enhancement (SE) aims to improve speech quality and intelligibility, which are both related to a smooth transition in speech segments that may carry linguistic information, e.g. phones and syllables. In this study, we propose a novel phone-for tified perceptual loss (PFPL) that takes phonetic information into account for training SE models. To effectively incorporate the phonetic information, the PFPL is computed based on latent representations of the wav2vec model, a powerful self-supervised encoder that renders rich phonetic information. To more accurately measure the distribution distances of the latent representations, the PFPL adopts the Wasserstein distance as the distance measure. Our experimental results first reveal that the PFPL is more correlated with the perceptual evaluation metrics, as compared to signal-level losses. Moreover, the results showed that the PFPL can enable a deep complex U-Net SE model to achieve highly competitive performance in terms of standardized quality and intelligibility evaluations on the Voice Bank-DEMAND dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا