ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Perceptual Quality by Phone-Fortified Perceptual Loss using Wasserstein Distance for Speech Enhancement

96   0   0.0 ( 0 )
 نشر من قبل Tsun-An Hsieh
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Speech enhancement (SE) aims to improve speech quality and intelligibility, which are both related to a smooth transition in speech segments that may carry linguistic information, e.g. phones and syllables. In this study, we propose a novel phone-fortified perceptual loss (PFPL) that takes phonetic information into account for training SE models. To effectively incorporate the phonetic information, the PFPL is computed based on latent representations of the wav2vec model, a powerful self-supervised encoder that renders rich phonetic information. To more accurately measure the distribution distances of the latent representations, the PFPL adopts the Wasserstein distance as the distance measure. Our experimental results first reveal that the PFPL is more correlated with the perceptual evaluation metrics, as compared to signal-level losses. Moreover, the results showed that the PFPL can enable a deep complex U-Net SE model to achieve highly competitive performance in terms of standardized quality and intelligibility evaluations on the Voice Bank-DEMAND dataset.



قيم البحث

اقرأ أيضاً

Utilizing a human-perception-related objective function to train a speech enhancement model has become a popular topic recently. The main reason is that the conventional mean squared error (MSE) loss cannot represent auditory perception well. One of the typical hu-man-perception-related metrics, which is the perceptual evaluation of speech quality (PESQ), has been proven to provide a high correlation to the quality scores rated by humans. Owing to its complex and non-differentiable properties, however, the PESQ function may not be used to optimize speech enhancement models directly. In this study, we propose optimizing the enhancement model with an approximated PESQ function, which is differentiable and learned from the training data. The experimental results show that the learned surrogate function can guide the enhancement model to further boost the PESQ score (in-crease of 0.18 points compared to the results trained with MSE loss) and maintain the speech intelligibility.
We introduce the Expanded Groove MIDI dataset (E-GMD), an automatic drum transcription (ADT) dataset that contains 444 hours of audio from 43 drum kits, making it an order of magnitude larger than similar datasets, and the first with human-performed velocity annotations. We use E-GMD to optimize classifiers for use in downstream generation by predicting expressive dynamics (velocity) and show with listening tests that they produce outputs with improved perceptual quality, despite similar results on classification metrics. Via the listening tests, we argue that standard classifier metrics, such as accuracy and F-measure score, are insufficient proxies of performance in downstream tasks because they do not fully align with the perceptual quality of generated outputs.
In recent years, waveform-mapping-based speech enhancement (SE) methods have garnered significant attention. These methods generally use a deep learning model to directly process and reconstruct speech waveforms. Because both the input and output are in waveform format, the waveform-mapping-based SE methods can overcome the distortion caused by imperfect phase estimation, which may be encountered in spectral-mapping-based SE systems. So far, most waveform-mapping-based SE methods have focused on single-channel tasks. In this paper, we propose a novel fully convolutional network (FCN) with Sinc and dilated convolutional layers (termed SDFCN) for multichannel SE that operates in the time domain. We also propose an extended version of SDFCN, called the residual SDFCN (termed rSDFCN). The proposed methods are evaluated on two multichannel SE tasks, namely the dual-channel inner-ear microphones SE task and the distributed microphones SE task. The experimental results confirm the outstanding denoising capability of the proposed SE systems on both tasks and the benefits of using the residual architecture on the overall SE performance.
Previous studies have confirmed the effectiveness of leveraging articulatory information to attain improved speech enhancement (SE) performance. By augmenting the original acoustic features with the place/manner of articulatory features, the SE proce ss can be guided to consider the articulatory properties of the input speech when performing enhancement. Hence, we believe that the contextual information of articulatory attributes should include useful information and can further benefit SE. In this study, we propose an SE system that incorporates contextual articulatory information; such information is obtained using broad phone class (BPC) end-to-end automatic speech recognition (ASR). Meanwhile, two training strategies are developed to train the SE system based on the BPC-based ASR: multitask-learning and deep-feature training strategies. Experimental results on the TIMIT dataset confirm that the contextual articulatory information facilitates an SE system in achieving better results. Moreover, in contrast to another SE system that is trained with monophonic ASR, the BPC-based ASR (providing contextual articulatory information) can improve the SE performance more effectively under different signal-to-noise ratios(SNR).
Autoencoders are commonly trained using element-wise loss. However, element-wise loss disregards high-level structures in the image which can lead to embeddings that disregard them as well. A recent improvement to autoencoders that helps alleviate th is problem is the use of perceptual loss. This work investigates perceptual loss from the perspective of encoder embeddings themselves. Autoencoders are trained to embed images from three different computer vision datasets using perceptual loss based on a pretrained model as well as pixel-wise loss. A host of different predictors are trained to perform object positioning and classification on the datasets given the embedded images as input. The two kinds of losses are evaluated by comparing how the predictors performed with embeddings from the differently trained autoencoders. The results show that, in the image domain, the embeddings generated by autoencoders trained with perceptual loss enable more accurate predictions than those trained with element-wise loss. Furthermore, the results show that, on the task of object positioning of a small-scale feature, perceptual loss can improve the results by a factor 10. The experimental setup is available online: https://github.com/guspih/Perceptual-Autoencoders

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا