ﻻ يوجد ملخص باللغة العربية
Machine learning models have emerged as powerful tools in physics and engineering. Although flexible, a fundamental challenge remains on how to connect new machine learning models with known physics. In this work, we present an autoencoder with latent space penalization, which discovers finite dimensional manifolds underlying the partial differential equations of physics. We test this method on the Kuramoto-Sivashinsky (K-S), Korteweg-de Vries (KdV), and damped KdV equations. We show that the resulting optimal latent space of the K-S equation is consistent with the dimension of the inertial manifold. The results for the KdV equation imply that there is no reduced latent space, which is consistent with the truly infinite dimensional dynamics of the KdV equation. In the case of the damped KdV equation, we find that the number of active dimensions decreases with increasing damping coefficient. We then uncover a nonlinear basis representing the manifold of the latent space for the K-S equation.
We study the problem of predicting rare critical transition events for a class of slow-fast nonlinear dynamical systems. The state of the system of interest is described by a slow process, whereas a faster process drives its evolution and induces cri
Stochastic dynamical systems with continuous symmetries arise commonly in nature and often give rise to coherent spatio-temporal patterns. However, because of their random locations, these patterns are not well captured by current order reduction tec
Scaling regions -- intervals on a graph where the dependent variable depends linearly on the independent variable -- abound in dynamical systems, notably in calculations of invariants like the correlation dimension or a Lyapunov exponent. In these ap
We extend the scope of the dynamical theory of extreme values to cover phenomena that do not happen instantaneously, but evolve over a finite, albeit unknown at the onset, time interval. We consider complex dynamical systems, composed of many individ
In this paper, we consider modeling missing dynamics with a nonparametric non-Markovian model, constructed using the theory of kernel embedding of conditional distributions on appropriate Reproducing Kernel Hilbert Spaces (RKHS), equipped with orthon