ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling of Missing Dynamical Systems: Deriving Parametric Models using a Nonparametric Framework

136   0   0.0 ( 0 )
 نشر من قبل John Harlim
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider modeling missing dynamics with a nonparametric non-Markovian model, constructed using the theory of kernel embedding of conditional distributions on appropriate Reproducing Kernel Hilbert Spaces (RKHS), equipped with orthonormal basis functions. Depending on the choice of the basis functions, the resulting closure model from this nonparametric modeling formulation is in the form of parametric model. This suggests that the success of various parametric modeling approaches that were proposed in various domains of applications can be understood through the RKHS representations. When the missing dynamical terms evolve faster than the relevant observable of interest, the proposed approach is consistent with the effective dynamics derived from the classical averaging theory. In the linear Gaussian case without the time-scale gap, we will show that the proposed non-Markovian model with a very long memory yields an accurate estimation of the nontrivial autocovariance function for the relevant variable of the full dynamics. Supporting numerical results on instructive nonlinear dynamics show that the proposed approach is able to replicate high-dimensional missing dynamical terms on problems with and without the separation of temporal scales.

قيم البحث

اقرأ أيضاً

A probabilistic model describes a system in its observational state. In many situations, however, we are interested in the systems response under interventions. The class of structural causal models provides a language that allows us to model the beh aviour under interventions. It can been taken as a starting point to answer a plethora of causal questions, including the identification of causal effects or causal structure learning. In this chapter, we provide a natural and straight-forward extension of this concept to dynamical systems, focusing on continuous time models. In particular, we introduce two types of causal kinetic models that differ in how the randomness enters into the model: it may either be considered as observational noise or as systematic driving noise. In both cases, we define interventions and therefore provide a possible starting point for causal inference. In this sense, the book chapter provides more questions than answers. The focus of the proposed causal kinetic models lies on the dynamics themselves rather than corresponding stationary distributions, for example. We believe that this is beneficial when the aim is to model the full time evolution of the system and data are measured at different time points. Under this focus, it is natural to consider interventions in the differential equations themselves.
In this paper we develop a nonparametric maximum likelihood estimate of the mixing distribution of the parameters of a linear stochastic dynamical system. This includes, for example, pharmacokinetic population models with process and measurement nois e that are linear in the state vector, input vector and the process and measurement noise vectors. Most research in mixing distributions only considers measurement noise. The advantages of the models with process noise are that, in addition to the measurements errors, the uncertainties in the model itself are taken into the account. For example, for deterministic pharmacokinetic models, errors in dose amounts, administration times, and timing of blood samples are typically not included. For linear stochastic models, we use linear Kalman-Bucy filtering to calculate the likelihood of the observations and then employ a nonparametric adaptive grid algorithm to find the nonparametric maximum likelihood estimate of the mixing distribution. We then use the directional derivatives of the estimated mixing distribution to show that the result found attains a global maximum. A simple example using a one compartment pharmacokinetic linear stochastic model is given. In addition to population pharmacokinetics, this research also applies to empirical Bayes estimation.
Complex dynamical systems are used for predictions in many domains. Because of computational costs, models are truncated, coarsened, or aggregated. As the neglected and unresolved terms become important, the utility of model predictions diminishes. W e develop a novel, versatile, and rigorous methodology to learn non-Markovian closure parameterizations for known-physics/low-fidelity models using data from high-fidelity simulations. The new neural closure models augment low-fidelity models with neural delay differential equations (nDDEs), motivated by the Mori-Zwanzig formulation and the inherent delays in complex dynamical systems. We demonstrate that neural closures efficiently account for truncated modes in reduced-order-models, capture the effects of subgrid-scale processes in coarse models, and augment the simplification of complex biological and physical-biogeochemical models. We find that using non-Markovian over Markovian closures improves long-term prediction accuracy and requires smaller networks. We derive adjoint equations and network architectures needed to efficiently implement the new discrete and distributed nDDEs, for any time-integration schemes and allowing nonuniformly-spaced temporal training data. The performance of discrete over distributed delays in closure models is explained using information theory, and we find an optimal amount of past information for a specified architecture. Finally, we analyze computational complexity and explain the limited additional cost due to neural closure models.
Machine learning models have emerged as powerful tools in physics and engineering. Although flexible, a fundamental challenge remains on how to connect new machine learning models with known physics. In this work, we present an autoencoder with laten t space penalization, which discovers finite dimensional manifolds underlying the partial differential equations of physics. We test this method on the Kuramoto-Sivashinsky (K-S), Korteweg-de Vries (KdV), and damped KdV equations. We show that the resulting optimal latent space of the K-S equation is consistent with the dimension of the inertial manifold. The results for the KdV equation imply that there is no reduced latent space, which is consistent with the truly infinite dimensional dynamics of the KdV equation. In the case of the damped KdV equation, we find that the number of active dimensions decreases with increasing damping coefficient. We then uncover a nonlinear basis representing the manifold of the latent space for the K-S equation.
We consider the problem of flexible modeling of higher order Markov chains when an upper bound on the order of the chain is known but the true order and nature of the serial dependence are unknown. We propose Bayesian nonparametric methodology based on conditional tensor factorizations, which can characterize any transition probability with a specified maximal order. The methodology selects the important lags and captures higher order interactions among the lags, while also facilitating calculation of Bayes factors for a variety of hypotheses of interest. We design efficient Markov chain Monte Carlo algorithms for posterior computation, allowing for uncertainty in the set of important lags to be included and in the nature and order of the serial dependence. The methods are illustrated using simulation experiments and real world applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا